IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v12y2021i2p28-d674864.html
   My bibliography  Save this article

Can Suboptimal Visual Environments Negatively Affect Children’s Cognitive Development?

Author

Listed:
  • Alexandros A. Lavdas

    (Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
    The Human Architecture & Planning Institute, Inc., 43 Bradford St., Concord, MA 01742, USA)

  • Nikos A. Salingaros

    (Departments of Mathematics and Architecture, The University of Texas, San Antonio, TX 78249, USA)

Abstract

There are indications that children born during the period of COVID-19 lockdown have cognitive development issues, without having been affected by the virus. We discuss here the idea that environmental deprivation—and, especially, the lack of appropriate visual stimulation—might be one source of these defects. This thought is in line with previous findings in children brought up in orphanages with poor environmental stimulation, hypothesizing that the minimalist architectural style prevailing for the last several decades is among the potential contributing factors. The process of eliminating organized complexity characteristic of organic forms may prove to be detrimental for humanity’s future, providing suboptimal environmental stimulation and opportunities for interaction during the critical stages of brain development.

Suggested Citation

  • Alexandros A. Lavdas & Nikos A. Salingaros, 2021. "Can Suboptimal Visual Environments Negatively Affect Children’s Cognitive Development?," Challenges, MDPI, vol. 12(2), pages 1-12, November.
  • Handle: RePEc:gam:jchals:v:12:y:2021:i:2:p:28-:d:674864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/12/2/28/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/12/2/28/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerd Kempermann & H. Georg Kuhn & Fred H. Gage, 1997. "More hippocampal neurons in adult mice living in an enriched environment," Nature, Nature, vol. 386(6624), pages 493-495, April.
    2. J. Pretty & J. Peacock & R. Hine & M. Sellens & N. South & M. Griffin, 2007. "Green exercise in the UK countryside: Effects on health and psychological well-being, and implications for policy and planning," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 50(2), pages 211-231.
    3. Julian Schrittwieser & Ioannis Antonoglou & Thomas Hubert & Karen Simonyan & Laurent Sifre & Simon Schmitt & Arthur Guez & Edward Lockhart & Demis Hassabis & Thore Graepel & Timothy Lillicrap & David , 2020. "Mastering Atari, Go, chess and shogi by planning with a learned model," Nature, Nature, vol. 588(7839), pages 604-609, December.
    4. Irina Voineagu & Xinchen Wang & Patrick Johnston & Jennifer K. Lowe & Yuan Tian & Steve Horvath & Jonathan Mill & Rita M. Cantor & Benjamin J. Blencowe & Daniel H. Geschwind, 2011. "Transcriptomic analysis of autistic brain reveals convergent molecular pathology," Nature, Nature, vol. 474(7351), pages 380-384, June.
    5. Marco Aresta & Nikos A. Salingaros, 2021. "The Importance of Domestic Space in the Times of COVID-19," Challenges, MDPI, vol. 12(2), pages 1-9, October.
    6. Kelly E. Robles & Nicole A. Liaw & Richard P. Taylor & Dare A. Baldwin & Margaret E. Sereno, 2020. "A shared fractal aesthetic across development," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandros A. Lavdas & Nikos A. Salingaros, 2022. "Architectural Beauty: Developing a Measurable and Objective Scale," Challenges, MDPI, vol. 13(2), pages 1-32, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Wenhao & Stickley, Andrew & Ueda, Michiko, 2021. "Green space and suicide mortality in Japan: An ecological study," Social Science & Medicine, Elsevier, vol. 282(C).
    2. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    4. Somajita Paul & Harini Nagendra, 2017. "Factors Influencing Perceptions and Use of Urban Nature: Surveys of Park Visitors in Delhi," Land, MDPI, vol. 6(2), pages 1-23, April.
    5. Glenn N Saxe & Alexander Statnikov & David Fenyo & Jiwen Ren & Zhiguo Li & Meera Prasad & Dennis Wall & Nora Bergman & Ernestine C Briggs & Constantin Aliferis, 2016. "A Complex Systems Approach to Causal Discovery in Psychiatry," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    6. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Benjamin A Samuels & E David Leonardo & Alex Dranovsky & Amanda Williams & Erik Wong & Addie May I Nesbitt & Richard D McCurdy & Rene Hen & Mark Alter, 2014. "Global State Measures of the Dentate Gyrus Gene Expression System Predict Antidepressant-Sensitive Behaviors," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    8. Woodley of Menie, Michael A. & Peñaherrera-Aguirre, Mateo & Sarraf, Matthew A., 2022. "Signs of a Flynn effect in rodents? Secular differentiation of the manifold of general cognitive ability in laboratory mice (Mus musculus) and Norwegian rats (Rattus norvegicus) over a century—Results," Intelligence, Elsevier, vol. 95(C).
    9. Jia Tao & Meng Yang & Jing Wu, 2022. "Coupling Coordination Evaluation of Lakefront Landscape Spatial Quality and Public Sentiment," Land, MDPI, vol. 11(6), pages 1-29, June.
    10. Elizabeth P.D. Koselka & Lucy C. Weidner & Arseniy Minasov & Marc G. Berman & William R. Leonard & Marianne V. Santoso & Junia N. de Brito & Zachary C. Pope & Mark A. Pereira & Teresa H. Horton, 2019. "Walking Green: Developing an Evidence Base for Nature Prescriptions," IJERPH, MDPI, vol. 16(22), pages 1-18, November.
    11. Nuno Loureiro & Luís Calmeiro & Adilson Marques & Diego Gomez-Baya & Margarida Gaspar de Matos, 2021. "The Role of Blue and Green Exercise in Planetary Health and Well-Being," Sustainability, MDPI, vol. 13(19), pages 1-12, September.
    12. Stella Apostolaki & Ebun Akinsete & Phoebe Koundouri & Panagiotis Samartzis, 2019. "Freshwater: The importance of freshwater for providing ecosystem services," DEOS Working Papers 1905, Athens University of Economics and Business.
    13. Jongwook Tae & Daeyoung Jeong & Jinhyung Chon, 2022. "How Can Apartment-Complex Landscaping Space Improve Residents’ Psychological Well-Being?: The Case of the Capital Region in South Korea," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    14. Kyung Hee Oh & Won Sop Shin & Tae Gyu Khil & Dong Jun Kim, 2020. "Six-Step Model of Nature-Based Therapy Process," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    15. Alexandros A Lavdas & Uta Schirpke, 2020. "Aesthetic preference is related to organized complexity," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.
    16. Jinke Yao & Jiachen Xu & Ning Zhang & Yajuan Guan, 2023. "Model-Based Reinforcement Learning Method for Microgrid Optimization Scheduling," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    17. Manvendra Singh & Ying Zhao & Vinicius Daguano Gastaldi & Sonja M. Wojcik & Yasmina Curto & Riki Kawaguchi & Ricardo M. Merino & Laura Fernandez Garcia-Agudo & Holger Taschenberger & Nils Brose & Dani, 2023. "Erythropoietin re-wires cognition-associated transcriptional networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Weiwu Ren & Jialin Zhu & Hui Qi & Ligang Cong & Xiaoqiang Di, 2022. "Dynamic optimization of intersatellite link assignment based on reinforcement learning," International Journal of Distributed Sensor Networks, , vol. 18(2), pages 15501477211, February.
    19. Syed Ghazi Sarwat & Timoleon Moraitis & C. David Wright & Harish Bhaskaran, 2022. "Chalcogenide optomemristors for multi-factor neuromorphic computation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:12:y:2021:i:2:p:28-:d:674864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.