IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v11y2020i2p17-d393807.html
   My bibliography  Save this article

Operating Small Hydropower Plants in Greece under Intermittent Flow Uncertainty: The Case of Tsiknias River (Lesvos)

Author

Listed:
  • Ourania Tzoraki

    (Department of Marine Sciences, University of the Aegean, 81100 Mytilene, Greece)

Abstract

In arid and semi-arid parts of the world, river exploitation is intensive, involving water storage for irrigation or hydropower generation. In Greece, 100 small hydropower plants (SHPs) take advantage of less than 10% of the hydropower potential of low flow streams (<2 m 3 /s), a very small amount in relation to the 70% of the European Union. The energy policy of complete decarbonization of the country by 2023 on a national scale opens the road for new investments in SHP projects, especially in intermittent-flow streams of the Greek islands. Simulated flows by the Modello Idrologico SemiDistribuito in continuo (MISDc model) are used to construct the annual flow duration curve (FDC) to study and assess the hydropower potential of an intermittent stream (Tsiknias river, Lesvos, Greece). For Tsiknias River, but also for six other intermittent-flow rivers of Crete island, the capacity factor (CF), which represents the mean annual power of the hydropower plant, should remain >75% to exploit the river’s potential. The FDC and CF are essential in designing SHP projects in intermittent-flow streams with long no-flow periods. The development of public participatory approaches and a closer cooperation among policy makers and stakeholders should work to promote hydropower exploitation and accelerate licensing procedures.

Suggested Citation

  • Ourania Tzoraki, 2020. "Operating Small Hydropower Plants in Greece under Intermittent Flow Uncertainty: The Case of Tsiknias River (Lesvos)," Challenges, MDPI, vol. 11(2), pages 1-15, August.
  • Handle: RePEc:gam:jchals:v:11:y:2020:i:2:p:17-:d:393807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/11/2/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/11/2/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Lelieveld & P. Hadjinicolaou & E. Kostopoulou & J. Chenoweth & M. Maayar & C. Giannakopoulos & C. Hannides & M. Lange & M. Tanarhte & E. Tyrlis & E. Xoplaki, 2012. "Climate change and impacts in the Eastern Mediterranean and the Middle East," Climatic Change, Springer, vol. 114(3), pages 667-687, October.
    2. Gudrun Schwilch & Tatenda Lemann & Örjan Berglund & Carlo Camarotto & Artemi Cerdà & Ioannis N. Daliakopoulos & Silvia Kohnová & Dominika Krzeminska & Teodoro Marañón & René Rietra & Grzegorz Siebiele, 2018. "Assessing Impacts of Soil Management Measures on Ecosystem Services," Sustainability, MDPI, vol. 10(12), pages 1-26, November.
    3. Luisa Liucci & Daniela Valigi & Stefano Casadei, 2014. "A New Application of Flow Duration Curve (FDC) in Designing Run-of-River Power Plants," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 881-895, February.
    4. Punys, Petras & Kvaraciejus, Algis & Dumbrauskas, Antanas & Šilinis, Linas & Popa, Bogdan, 2019. "An assessment of micro-hydropower potential at historic watermill, weir, and non-powered dam sites in selected EU countries," Renewable Energy, Elsevier, vol. 133(C), pages 1108-1123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    2. Katarzyna Kubiak-Wójcicka & Leszek Szczęch, 2021. "Dynamics of Electricity Production against the Backdrop of Climate Change: A Case Study of Hydropower Plants in Poland," Energies, MDPI, vol. 14(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    2. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Andrej Predin & Matej Fike & Marko Pezdevšek & Gorazd Hren, 2021. "Lost Energy of Water Spilled over Hydropower Dams," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    4. Saskia Keesstra & Saskia Visser & Margot De Cleen, 2021. "Achieving Land Degradation Neutrality: A Robust Soil System Forms the Basis for Nature-Based Solutions," Land, MDPI, vol. 10(12), pages 1-4, November.
    5. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Anita Lazurko & Henry David Venema, 2017. "Financing High Performance Climate Adaptation in Agriculture: Climate Bonds for Multi-Functional Water Harvesting Infrastructure on the Canadian Prairies," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    7. Lavrič, Henrik & Rihar, Andraž & Fišer, Rastko, 2019. "Influence of equipment size and installation height on electricity production in an Archimedes screw-based ultra-low head small hydropower plant and its economic feasibility," Renewable Energy, Elsevier, vol. 142(C), pages 468-477.
    8. Zielinski, Michał & Myszkowski, Adam & Pelic, Marcin & Staniek, Roman, 2022. "Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants," Renewable Energy, Elsevier, vol. 182(C), pages 1012-1027.
    9. Seulkee Heo & Whanhee Lee & Michelle L. Bell, 2021. "Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    10. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    11. Guy Gratton & Anil Padhra & Spyridon Rapsomanikis & Paul D. Williams, 2020. "The impacts of climate change on Greek airports," Climatic Change, Springer, vol. 160(2), pages 219-231, May.
    12. Pan, Xiongfeng & Wang, Mengyang & Li, Mengna, 2023. "Low-carbon policy and industrial structure upgrading: Based on the perspective of strategic interaction among local governments," Energy Policy, Elsevier, vol. 183(C).
    13. Panteng Wan & Kangning Xiong & Le Zhang, 2022. "Heterogeneity of Spatial-Temporal Distribution of Nitrogen in the Karst Rocky Desertification Soils and Its Implications for Ecosystem Service Support of the Desertification Control—A Literature Revie," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    14. Emanuela Sassu & Riccardo Zucca & Giovanni M. Sechi, 2021. "Calibration Procedure of Regional Flow Duration Curves Evaluating Water Resource Withdrawal from Diversion Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1135-1148, March.
    15. Tianxu Mao & Genxu Wang & Tao Zhang, 2016. "Impacts of Climatic Change on Hydrological Regime in the Three-River Headwaters Region, China, 1960-2009," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 115-131, January.
    16. Irene Christoforidi & Dimitrios Kollaros & Thrassyvoulos Manios & Ioannis N. Daliakopoulos, 2022. "Drought- and Salt-Tolerant Plants of the Mediterranean and Their Diverse Applications: The Case of Crete," Land, MDPI, vol. 11(11), pages 1-21, November.
    17. Silva-Olaya, Adriana M. & Ortíz-Morea, Fausto A. & España-Cetina, Gina P. & Olaya-Montes, Andrés & Grados, Daniel & Gasparatos, Alexandros & Cherubin, Mauricio Roberto, 2022. "Composite index for soil-related ecosystem services assessment: Insights from rainforest-pasture transitions in the Colombian Amazon," Ecosystem Services, Elsevier, vol. 57(C).
    18. Bartosz Ceran & Jakub Jurasz & Robert Wróblewski & Adam Guderski & Daria Złotecka & Łukasz Kaźmierczak, 2020. "Impact of the Minimum Head on Low-Head Hydropower Plants Energy Production and Profitability," Energies, MDPI, vol. 13(24), pages 1-21, December.
    19. Fouad H. Saeed & Mahmoud Saleh Al-Khafaji & Furat A. Mahmood Al-Faraj & Vincent Uzomah, 2024. "Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    20. Nicola Dal Ferro & Carlo Camarotto & Ilaria Piccoli & Antonio Berti & Jane Mills & Francesco Morari, 2020. "Stakeholder Perspectives to Prevent Soil Organic Matter Decline in Northeastern Italy," Sustainability, MDPI, vol. 12(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:11:y:2020:i:2:p:17-:d:393807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.