IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v155y2020icp153-159.html
   My bibliography  Save this article

Verification of a robust method for sizing and siting the small hydropower run-of-river plant potential by using GIS

Author

Listed:
  • Tamm, Ottar
  • Tamm, Toomas

Abstract

The global renewable energy potential estimates vary hundredfold, while the estimates for global hydropower vary fourfold. Thus, an accurate method of assessing the small hydropower (SHP) potential at regional and (sub)-national scales is required. This study aims to present and verify a robust method for sizing and siting the SHP potential by utilizing the capabilities of GIS. The proposed virtual hydropower assessment (VHA) method identifies suitable locations for hydropower production based on digital elevation and specific discharge maps. VHA was conducted for Estonia, a low-lying country in Europe. Twenty operational or abandoned SHP in thirteen rivers were used for verification. There is a good overall agreement between the computed virtual and installed capacities. The VHA method provided a realistic output for SHP location siting and revealed some unexploited opportunities to install micro and mini-hydro schemes in all of the analyzed rivers. Further research is required with a larger verification data sample for the VHA method to investigate the effects of the digital elevation model resolution, river segment length, and hydrological components. The outcomes of this study provide a reliable and robust method of assessing the SHP potential worldwide, particularly in countries where meteorological and hydrological data are scarce.

Suggested Citation

  • Tamm, Ottar & Tamm, Toomas, 2020. "Verification of a robust method for sizing and siting the small hydropower run-of-river plant potential by using GIS," Renewable Energy, Elsevier, vol. 155(C), pages 153-159.
  • Handle: RePEc:eee:renene:v:155:y:2020:i:c:p:153-159
    DOI: 10.1016/j.renene.2020.03.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mosier, Thomas M. & Sharp, Kendra V. & Hill, David F., 2016. "The Hydropower Potential Assessment Tool (HPAT): Evaluation of run-of-river resource potential for any global land area and application to Falls Creek, Oregon, USA," Renewable Energy, Elsevier, vol. 97(C), pages 492-503.
    2. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    3. Zaidi, Arjumand Z. & Khan, Majid, 2018. "Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 106-116.
    4. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    5. Moiz, Abdul & Kawasaki, Akiyuki & Koike, Toshio & Shrestha, Maheswor, 2018. "A systematic decision support tool for robust hydropower site selection in poorly gauged basins," Applied Energy, Elsevier, vol. 224(C), pages 309-321.
    6. Nigel Arnell & Ben Lloyd-Hughes, 2014. "The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios," Climatic Change, Springer, vol. 122(1), pages 127-140, January.
    7. Sovacool, Benjamin K. & Bulan, L.C., 2011. "Behind an ambitious megaproject in Asia: The history and implications of the Bakun hydroelectric dam in Borneo," Energy Policy, Elsevier, vol. 39(9), pages 4842-4859, September.
    8. Petras Punys & Antanas Dumbrauskas & Algis Kvaraciejus & Gitana Vyciene, 2011. "Tools for Small Hydropower Plant Resource Planning and Development: A Review of Technology and Applications," Energies, MDPI, vol. 4(9), pages 1-20, August.
    9. Ansar, Atif & Flyvbjerg, Bent & Budzier, Alexander & Lunn, Daniel, 2014. "Should we build more large dams? The actual costs of hydropower megaproject development," Energy Policy, Elsevier, vol. 69(C), pages 43-56.
    10. Kusre, B.C. & Baruah, D.C. & Bordoloi, P.K. & Patra, S.C., 2010. "Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India)," Applied Energy, Elsevier, vol. 87(1), pages 298-309, January.
    11. David E. H. J. Gernaat & Patrick W. Bogaart & Detlef P. van Vuuren & Hester Biemans & Robin Niessink, 2017. "High-resolution assessment of global technical and economic hydropower potential," Nature Energy, Nature, vol. 2(10), pages 821-828, October.
    12. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    13. Soulis, Konstantinos X. & Manolakos, Dimitris & Anagnostopoulos, John & Papantonis, Dimitris, 2016. "Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas," Renewable Energy, Elsevier, vol. 92(C), pages 222-232.
    14. H. Coskun & Ugur Alganci & Ebru Eris & Necati Agıralioglu & H. Cigizoglu & Levent Yilmaz & Z. Toprak, 2010. "Remote Sensing and GIS Innovation with Hydrologic Modelling for Hydroelectric Power Plant (HPP) in Poorly Gauged Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3757-3772, November.
    15. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    16. Rojanamon, Pannathat & Chaisomphob, Taweep & Bureekul, Thawilwadee, 2009. "Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2336-2348, December.
    17. Li, Jianming & Zhang, Yanjun, 2017. "GIS-supported certainty factor (CF) models for assessment of geothermal potential: A case study of Tengchong County, southwest China," Energy, Elsevier, vol. 140(P1), pages 552-565.
    18. Bayazıt, Yıldırım & Bakış, Recep & Koç, Cengiz, 2017. "An investigation of small scale hydropower plants using the geographic information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 289-294.
    19. Hosseini, S. M. H. & Forouzbakhsh, F. & Rahimpoor, M., 2005. "Determination of the optimal installation capacity of small hydro-power plants through the use of technical, economic and reliability indices," Energy Policy, Elsevier, vol. 33(15), pages 1948-1956, October.
    20. Punys, Petras & Kvaraciejus, Algis & Dumbrauskas, Antanas & Šilinis, Linas & Popa, Bogdan, 2019. "An assessment of micro-hydropower potential at historic watermill, weir, and non-powered dam sites in selected EU countries," Renewable Energy, Elsevier, vol. 133(C), pages 1108-1123.
    21. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soulis, Konstantinos X. & Manolakos, Dimitris & Ntavou, Erika & Kosmadakis, George, 2022. "A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece," Renewable Energy, Elsevier, vol. 181(C), pages 116-128.
    2. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    3. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    4. Morabito, Alessandro & Vagnoni, Elena & Di Matteo, Mariano & Hendrick, Patrick, 2021. "Numerical investigation on the volute cutwater for pumps running in turbine mode," Renewable Energy, Elsevier, vol. 175(C), pages 807-824.
    5. Katerina Spanoudaki & Panayiotis Dimitriadis & Emmanouil A. Varouchakis & Gerald A. Corzo Perez, 2022. "Estimation of Hydropower Potential Using Bayesian and Stochastic Approaches for Streamflow Simulation and Accounting for the Intermediate Storage Retention," Energies, MDPI, vol. 15(4), pages 1-20, February.
    6. Egidijus Kasiulis & Petras Punys & Algis Kvaraciejus & Antanas Dumbrauskas & Linas Jurevičius, 2020. "Small Hydropower in the Baltic States—Current Status and Potential for Future Development," Energies, MDPI, vol. 13(24), pages 1-21, December.
    7. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    8. Abdelhady, Hazem U. & Imam, Yehya E. & Shawwash, Ziad & Ghanem, Ashraf, 2021. "Parallelized Bi-level optimization model with continuous search domain for selection of run-of-river hydropower projects," Renewable Energy, Elsevier, vol. 167(C), pages 116-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhaubanjar, Sanita & Lutz, Arthur F & Pradhananga, Saurav & Smolenaars, Wouter & Khanal, Sonu & Biemans, Hester & Nepal, Santosh & Ludwig, Fulco & Shrestha, Arun Bhakta & Immerzeel, Walter W, 2024. "From theoretical to sustainable potential for run-of-river hydropower development in the upper Indus basin," Applied Energy, Elsevier, vol. 357(C).
    2. Garegnani, Giulia & Sacchelli, Sandro & Balest, Jessica & Zambelli, Pietro, 2018. "GIS-based approach for assessing the energy potential and the financial feasibility of run-off-river hydro-power in Alpine valleys," Applied Energy, Elsevier, vol. 216(C), pages 709-723.
    3. Moiz, Abdul & Kawasaki, Akiyuki & Koike, Toshio & Shrestha, Maheswor, 2018. "A systematic decision support tool for robust hydropower site selection in poorly gauged basins," Applied Energy, Elsevier, vol. 224(C), pages 309-321.
    4. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    5. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    6. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    7. Soulis, Konstantinos X. & Manolakos, Dimitris & Ntavou, Erika & Kosmadakis, George, 2022. "A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece," Renewable Energy, Elsevier, vol. 181(C), pages 116-128.
    8. Vincenzo Sammartano & Lorena Liuzzo & Gabriele Freni, 2019. "Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure," Energies, MDPI, vol. 12(18), pages 1-20, September.
    9. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    10. Anas Mahmood Al-Juboori & Aytac Guven, 2016. "Hydropower Plant Site Assessment by Integrated Hydrological Modeling, Gene Expression Programming and Visual Basic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2517-2530, May.
    11. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    12. Rahim Moltames & Mohammad Sajad Naghavi & Mahyar Silakhori & Younes Noorollahi & Hossein Yousefi & Mostafa Hajiaghaei-Keshteli & Behzad Azizimehr, 2022. "Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    13. Soulis, Konstantinos X. & Manolakos, Dimitris & Anagnostopoulos, John & Papantonis, Dimitris, 2016. "Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas," Renewable Energy, Elsevier, vol. 92(C), pages 222-232.
    14. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    15. Ioannidou, Christina & O’Hanley, Jesse R., 2018. "Eco-friendly location of small hydropower," European Journal of Operational Research, Elsevier, vol. 264(3), pages 907-918.
    16. Zaidi, Arjumand Z. & Khan, Majid, 2018. "Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 106-116.
    17. Abdelhady, Hazem U. & Imam, Yehya E. & Shawwash, Ziad & Ghanem, Ashraf, 2021. "Parallelized Bi-level optimization model with continuous search domain for selection of run-of-river hydropower projects," Renewable Energy, Elsevier, vol. 167(C), pages 116-131.
    18. Palomino Cuya, Daly Grace & Brandimarte, Luigia & Popescu, Ioana & Alterach, Julio & Peviani, Maximo, 2013. "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, Elsevier, vol. 50(C), pages 103-114.
    19. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    20. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:155:y:2020:i:c:p:153-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.