IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i8p124-d162744.html
   My bibliography  Save this article

Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems

Author

Listed:
  • Mohammed Omer

    (Plant and Environmental Sciences Department, New Mexico State University, P.O. Box 30003 MSC 3Q, Las Cruces, NM 88003, USA)

  • Omololu J. Idowu

    (Extension Plant Sciences Department, New Mexico State University, P.O. Box 30003 MSC 3AE, Las Cruces, NM 88003, USA)

  • April L. Ulery

    (Plant and Environmental Sciences Department, New Mexico State University, P.O. Box 30003 MSC 3Q, Las Cruces, NM 88003, USA)

  • Dawn VanLeeuwen

    (Economics, Applied Statistics & International Business Department, New Mexico State University, P.O. Box 30001 MSC 3CQ, Las Cruces, NM 88003, USA)

  • Steven J. Guldan

    (Plant and Environmental Sciences Department, New Mexico State University, P.O. Box 30003 MSC 3Q, Las Cruces, NM 88003, USA)

Abstract

Improving the soil quality in arid agro-ecosystems requires a greater understanding of how the time-of-sampling and management affect the soil measurements. We evaluated the selected soil quality indicators on samples collected at a 0–0.15 m depth, and at various sampling dates of the year, corresponding to the fall of 2015, winter of 2015/2016, spring of 2016, and the summer of 2016. The three crop management systems sampled included alfalfa ( Medicago sativa ), upland cotton ( Gossypium hirsutum ), and pecan ( Carya illinoinensis ). The soil properties measured included the wet aggregate stability (WAS), mean weight diameter of dry aggregates (MWD), dry aggregates greater than 2 mm (AGG >2 mm), dry aggregates less than 0.25 mm (AGG <0.25 mm), available water capacity (AWC), soil organic matter (SOM), permanganate oxidizable carbon (POXC), soil bulk density (BD), soil electrical conductivity (EC), pH, nitrate-nitrogen (NO3-N), extractable potassium (K), extractable phosphorus (P), calcium (Ca), magnesium (Mg), sodium adsorption ratio (SAR), and micronutrients (zinc, iron, copper, and manganese). Out of the 21 soil measurements, 15 varied significantly with the time-of-sampling within a year, although there were no consistent trends in variability. However, only a few measurements differed significantly with the crop management practices tested. Wet aggregate stability, MWD, AWC, and BD were significantly higher in the summer, while POXC and SOM were significantly higher in the fall and winter, respectively. Soil quality indicators such as NO3-N, K, and P decreased significantly during the spring. This study shows that the seasonal variability of the soil measurements can be significant in the arid agro-ecosystems, with the magnitude of variation depending on the measurement type. The soil managers in the region need to account for this variability, in order to be able to assess the changes in the soil quality. Also, because of the variability that can occur across the different sampling dates within a year, it is advisable to sample during the same period every year, for a consistent interpretation of the directional changes of the soil quality indicators.

Suggested Citation

  • Mohammed Omer & Omololu J. Idowu & April L. Ulery & Dawn VanLeeuwen & Steven J. Guldan, 2018. "Seasonal Changes of Soil Quality Indicators in Selected Arid Cropping Systems," Agriculture, MDPI, vol. 8(8), pages 1-12, August.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:8:p:124-:d:162744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/8/124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/8/124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajak, Daleshwar & Manjunatha, M.V. & Rajkumar, G.R. & Hebbara, M. & Minhas, P.S., 2006. "Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 30-36, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Qiu & Jia Hou & Na Guo & Zhanyi Wang & Chengjie Wang, 2022. "Seasonal Variations and Influencing Factors of Gross Nitrification Rate in Desert Steppe Soil," Sustainability, MDPI, vol. 14(8), pages 1-10, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    4. Yaqi Wang & Ming Gao & Heting Chen & Yiwen Chen & Lei Wang & Rui Wang, 2023. "Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    5. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    6. Fu, Xiaoke & Wu, Xiao & Wang, Haoyu & Chen, Yiwen & Wang, Rui & Wang, Yaqi, 2023. "Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    8. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    10. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    11. Zou, Xiaoxia & Li, Yu’e & Cremades, Roger & Gao, Qingzhu & Wan, Yunfan & Qin, Xiaobo, 2013. "Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China," Agricultural Water Management, Elsevier, vol. 129(C), pages 9-20.
    12. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    13. Xiaoxia Zou & Yu-e Li & Qingzhu Gao & Yunfan Wan, 2012. "How water saving irrigation contributes to climate change resilience—a case study of practices in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(2), pages 111-132, February.
    14. Rebecka Törnqvist & Jerker Jarsjö, 2012. "Water Savings Through Improved Irrigation Techniques: Basin-Scale Quantification in Semi-Arid Environments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 949-962, March.
    15. Suleiman, Ayman A. & Tojo Soler, Cecilia M. & Hoogenboom, Gerrit, 2007. "Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 33-42, July.
    16. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.
    17. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Yan, Shicheng & Xiang, Youzhen, 2018. "Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 195(C), pages 25-36.
    18. Wang, He & Feng, Di & Zhang, Anqi & Zheng, Chunlian & Li, Kejiang & Ning, Songrui & Zhang, Junpeng & Sun, Chitao, 2022. "Effects of saline water mulched drip irrigation on cotton yield and soil quality in the North China Plain," Agricultural Water Management, Elsevier, vol. 262(C).
    19. Xiaoxia Zou & Yu’e Li & Kuo Li & Roger Cremades & Qingzhu Gao & Yunfan Wan & Xiaobo Qin, 2015. "Greenhouse gas emissions from agricultural irrigation in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 295-315, February.
    20. Wang, Ruoshui & Wan, Shuqin & Sun, Jiaxia & Xiao, Huijie, 2018. "Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation," Agricultural Water Management, Elsevier, vol. 209(C), pages 20-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:8:p:124-:d:162744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.