IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics0378377424001720.html
   My bibliography  Save this article

Different amendments for combating soil sodicity in an olive orchard

Author

Listed:
  • Ziskin, Rona
  • Dag, Arnon
  • Yermiyahu, Uri
  • Levy, Guy J.

Abstract

Sodic soil formation, following irrigation with saline-sodic water has become a major concern due to its negative impact on soil structure, crop growth and yield. However, specifically in orchards, little knowledge exists regarding the reclamation of sodic soils. Our objective was to examine the effects of different amendments on soil reclamation and crop performance of olive grove. The study was conducted in a 14 years old olive grove, grown in a clayey soil, in which irrigation started in 2008 using saline-sodic water resulting in sodium adsorption ratio (SAR) ranging from 22 to 40 (mmolc L−1)0.5. Six treatments were studied: control (no amendments applied), CaCl2, MgCl2 and H2SO4 that were added to the irrigation water, and gypsiferous material (GM) that was added to the soil surface prior to the rainy season and either left spread or tilled into the upper soil layer. Soil samples were analyzed for selected saturated extract properties and for aggregate stability. Additionally, plant parameters including yield, trunk expansion, fruit oil content, and tree nutritional status were measured. The results showed that the lowest SARs were observed in the GM and GM till treatments at 0–30 cm [5.0 and 3.3 (mmolc L−1)0.5, respectively], while CaCl2 and MgCl2 treatments had the lowest SARs at 30–90 cm [16.2 and 17.1 (mmolc L−1)0.5, respectively]. GM and CaCl2 application raised the electrical conductivity (EC) levels to 6.9 and 7.6 dS m−1 respectively. GM addition resulted in the most stable aggregates which was associated with a significant improvement in average tree productivity of 33 kg/tree. Conversely, MgCl2 had the lowest average yield, of 21.3 kg/tree, which was attributed to the high concentration of Mg that led to some nutrient imbalances. In conclusion, the current study showed the efficacy of different amendments based on Ca for remediating sodic soil in drip-irrigated orchards.

Suggested Citation

  • Ziskin, Rona & Dag, Arnon & Yermiyahu, Uri & Levy, Guy J., 2024. "Different amendments for combating soil sodicity in an olive orchard," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424001720
    DOI: 10.1016/j.agwat.2024.108837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424001720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.