IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i1p108-d1560616.html
   My bibliography  Save this article

Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions

Author

Listed:
  • Jerzy Lisek

    (The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3 Str., 96-100 Skierniewice, Poland)

Abstract

Vine damage caused by spring frosts remains one of the main factors threatening grapevine yields in Central European countries, such as Poland. April frosts that followed a very early and warm spring in 2024 caused massive damage to young shoots and primary buds after budburst. This study was conducted on vines of fifty cultivars belonging to Vitis vinifera , interspecific hybrids, and inter-intra- or intra-interspecific hybrids (classified by some sources as V. vinifera ), which were obtained via field collection. The aim of this study was to obtain primary results regarding the fertility of secondary, basal, and latent buds. The presence of inflorescences in these buds determines the ability to compensate for yield, i.e., produce a crop after damage to the primary buds. The tested cultivars, which were within the three groups mentioned above, differed significantly in their ability to compensate for yield. The majority of the analyzed V. vinifera cultivars were characterized by lower fertility in their secondary, basal, and latent buds and a reduced ability to compensate for yield after post-budburst freeze damage compared to interspecific hybrids and inter-intra- or intra-interspecific hybrids. Future research, with more comprehensive data collected over a longer period, will provide stronger suggestions for suitable cultivars in regions at risk of spring frost damage.

Suggested Citation

  • Jerzy Lisek, 2025. "Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions," Agriculture, MDPI, vol. 15(1), pages 1-13, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:1:p:108-:d:1560616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/1/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/1/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Leeuwen, Cornelis & Darriet, Philippe, 2016. "The Impact of Climate Change on Viticulture and Wine Quality," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 150-167, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    3. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    4. Amogh Prakasha Kumar & Richard Watt & Laura Meriluoto, 2021. "New Evidence on Using Expert Ratings to Proxy for Wine Quality in Climate Change Research," Working Papers in Economics 21/10, University of Canterbury, Department of Economics and Finance.
    5. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Daria Maciejewska & Dawid Olewnicki & Dagmara Stangierska-Mazurkiewicz & Marcin Tyminski & Piotr Latocha, 2024. "Impact of Climate Change on the Development of Viticulture in Central Poland: Autoregression Modeling SAT Indicator," Agriculture, MDPI, vol. 14(5), pages 1-18, May.
    7. Helder Fraga & Teresa R. Freitas & Marco Moriondo & Daniel Molitor & João A. Santos, 2024. "Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach," Land, MDPI, vol. 13(6), pages 1-16, May.
    8. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    9. Kamila Veselá & Lucie Severová & Roman Svoboda, 2022. "The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    10. Mariana Guerra & Fátima Ferreira & Ana Alexandra Oliveira & Teresa Pinto & Carlos A. Teixeira, 2024. "Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    11. Isilda Cunha Menezes & Mário Santos & Lourdes Bugalho & Mário Gonzalez Pereira, 2024. "The Effects of Tree Shade on Vineyard Microclimate and Grape Production: A Novel Approach to Sun Radiation Modelling as a Response to Climate Change," Land, MDPI, vol. 13(11), pages 1-26, November.
    12. Theodoros Markopoulos & Dimitra Stougiannidou & Stavros Kontakos & Christos Staboulis, 2023. "Wine Quality Control Parameters and Effects of Regional Climate Variation on Sustainable Production," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    13. Naulleau, Audrey & Gary, Christian & Prévot, Laurent & Vinatier, Fabrice & Hossard, Laure, 2022. "How can winegrowers adapt to climate change? A participatory modeling approach in southern France," Agricultural Systems, Elsevier, vol. 203(C).
    14. Strack, Timo & Stoll, Manfred, 2022. "Soil water dynamics and drought stress response of Vitis vinifera L. in steep slope vineyard systems," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Simon Tscholl & Sebastian Candiago & Thomas Marsoner & Helder Fraga & Carlo Giupponi & Lukas Egarter Vigl, 2024. "Climate resilience of European wine regions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Omamuyovwi Gbejewoh & Saskia Keesstra & Erna Blancquaert, 2021. "The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    17. María Fandiño & Mar Vilanova & Marta Rodríguez-Febereiro & M. Teresa Teijeiro & Benjamín J. Rey & Javier J. Cancela, 2022. "Effect of Deficit Irrigation on Yield Components and Chemical Composition of Albariño Grapes Grown in Galicia, NW Spain," Agriculture, MDPI, vol. 12(10), pages 1-15, September.
    18. Fraga, Helder & Santos, João A., 2018. "Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal," Agricultural Systems, Elsevier, vol. 164(C), pages 107-115.
    19. Diana Ribeiro Tosato & Heather VanVolkenburg & Liette Vasseur, 2023. "An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada," Agriculture, MDPI, vol. 13(9), pages 1-13, September.
    20. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2019. "Performance of direct root-zone deficit irrigation on Vitis vinifera L. cv. Cabernet Sauvignon production and water use efficiency in semi-arid southcentral Washington," Agricultural Water Management, Elsevier, vol. 221(C), pages 47-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:1:p:108-:d:1560616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.