IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i9p1809-d1239420.html
   My bibliography  Save this article

An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada

Author

Listed:
  • Diana Ribeiro Tosato

    (Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada)

  • Heather VanVolkenburg

    (Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada)

  • Liette Vasseur

    (Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada)

Abstract

Vineyards are agroecosystems of great importance in the Niagara Region, Ontario (Canada). Due to its microclimate, this region is projected to be impacted by climate change with temperature increases, changes in precipitation patterns in all seasons, and greater frequency of extreme weather events. The aim of this review paper is to summarize which seasonal changes are expected to occur in the Niagara Region and assess how such changes are likely to affect the main components of the vineyard ecosystem (i.e., soil, vines, invertebrates, and pathogens). It is expected that by 2080 the region will experience an increase in temperature in all four seasons; an increase in precipitation during the fall, winter, and spring; and a decrease in precipitation during summer months. Impacts of the projected changes will likely lead to vine water stress, yield loss, increases in incidents of diseases, increases in the spread of new pests, and changes in grape quality ultimately resulting in lower wine quality and/or production. Current management practices will need to be better understood and adaptive strategies introduced to enhance grape growers’ ability to minimize these impacts.

Suggested Citation

  • Diana Ribeiro Tosato & Heather VanVolkenburg & Liette Vasseur, 2023. "An Overview of the Impacts of Climate Change on Vineyard Ecosystems in Niagara, Canada," Agriculture, MDPI, vol. 13(9), pages 1-13, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1809-:d:1239420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/9/1809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/9/1809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramos, M.C. & Martínez-Casasnovas, J.A., 2010. "Effects of precipitation patterns and temperature trends on soil water available for vineyards in a Mediterranean climate area," Agricultural Water Management, Elsevier, vol. 97(10), pages 1495-1505, October.
    2. Schultz, Hans R., 2016. "Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 181-200, May.
    3. van Leeuwen, Cornelis & Darriet, Philippe, 2016. "The Impact of Climate Change on Viticulture and Wine Quality," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 150-167, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamila Veselá & Lucie Severová & Roman Svoboda, 2022. "The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    2. Omamuyovwi Gbejewoh & Saskia Keesstra & Erna Blancquaert, 2021. "The 3Ps (Profit, Planet, and People) of Sustainability amidst Climate Change: A South African Grape and Wine Perspective," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
    3. Miroslava Navrátilová & Markéta Beranová & Lucie Severová & Karel Šrédl & Roman Svoboda & Josef Abrhám, 2020. "The Impact of Climate Change on the Sugar Content of Grapes and the Sustainability of their Production in the Czech Republic," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    4. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    5. Mariana Senkiv & Jörn Schultheiß & Maximilian Tafel & Martin Reiss & Eckhard Jedicke, 2022. "Are Winegrowers Tourism Promoters?," Sustainability, MDPI, vol. 14(13), pages 1-10, June.
    6. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    7. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    8. Amogh Prakasha Kumar & Richard Watt & Laura Meriluoto, 2021. "New Evidence on Using Expert Ratings to Proxy for Wine Quality in Climate Change Research," Working Papers in Economics 21/10, University of Canterbury, Department of Economics and Finance.
    9. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    10. Rachel Germanier & Niccolò Moricciani, 2023. "Perceiving and Adapting to Climate Change: Perspectives of Tuscan Wine-Producing Agritourism Owners," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    11. Daria Maciejewska & Dawid Olewnicki & Dagmara Stangierska-Mazurkiewicz & Marcin Tyminski & Piotr Latocha, 2024. "Impact of Climate Change on the Development of Viticulture in Central Poland: Autoregression Modeling SAT Indicator," Agriculture, MDPI, vol. 14(5), pages 1-18, May.
    12. Helder Fraga & Teresa R. Freitas & Marco Moriondo & Daniel Molitor & João A. Santos, 2024. "Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach," Land, MDPI, vol. 13(6), pages 1-16, May.
    13. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    14. Mariana Guerra & Fátima Ferreira & Ana Alexandra Oliveira & Teresa Pinto & Carlos A. Teixeira, 2024. "Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    15. Nadal, Miquel & Flexas, Jaume, 2019. "Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiency in crops," Agricultural Water Management, Elsevier, vol. 216(C), pages 457-472.
    16. Theodoros Markopoulos & Dimitra Stougiannidou & Stavros Kontakos & Christos Staboulis, 2023. "Wine Quality Control Parameters and Effects of Regional Climate Variation on Sustainable Production," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    17. Naulleau, Audrey & Gary, Christian & Prévot, Laurent & Vinatier, Fabrice & Hossard, Laure, 2022. "How can winegrowers adapt to climate change? A participatory modeling approach in southern France," Agricultural Systems, Elsevier, vol. 203(C).
    18. Strack, Timo & Stoll, Manfred, 2022. "Soil water dynamics and drought stress response of Vitis vinifera L. in steep slope vineyard systems," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Simon Tscholl & Sebastian Candiago & Thomas Marsoner & Helder Fraga & Carlo Giupponi & Lukas Egarter Vigl, 2024. "Climate resilience of European wine regions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. María Fandiño & Mar Vilanova & Marta Rodríguez-Febereiro & M. Teresa Teijeiro & Benjamín J. Rey & Javier J. Cancela, 2022. "Effect of Deficit Irrigation on Yield Components and Chemical Composition of Albariño Grapes Grown in Galicia, NW Spain," Agriculture, MDPI, vol. 12(10), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1809-:d:1239420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.