Monitoring Maize Canopy Chlorophyll Content throughout the Growth Stages Based on UAV MS and RGB Feature Fusion
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bazrafshan, Ommolbanin & Ehteram, Mohammad & Moshizi, Zahra Gerkaninezhad & Jamshidi, Sajad, 2022. "Evaluation and uncertainty assessment of wheat yield prediction by multilayer perceptron model with bayesian and copula bayesian approaches," Agricultural Water Management, Elsevier, vol. 273(C).
- Lili Zhou & Chenwei Nie & Tao Su & Xiaobin Xu & Yang Song & Dameng Yin & Shuaibing Liu & Yadong Liu & Yi Bai & Xiao Jia & Xiuliang Jin, 2023. "Evaluating the Canopy Chlorophyll Density of Maize at the Whole Growth Stage Based on Multi-Scale UAV Image Feature Fusion and Machine Learning Methods," Agriculture, MDPI, vol. 13(4), pages 1-22, April.
- Elsayed, Salah & Elhoweity, Mohamed & Ibrahim, Hazem H. & Dewir, Yaser Hassan & Migdadi, Hussein M. & Schmidhalter, Urs, 2017. "Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 189(C), pages 98-110.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adel H. Elmetwalli & Yasser S. A. Mazrou & Andrew N. Tyler & Peter D. Hunter & Osama Elsherbiny & Zaher Mundher Yaseen & Salah Elsayed, 2022. "Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
- Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
- Ali Sardar Shahraki & Mohim Tash & Tommaso Caloiero & Ommolbanin Bazrafshan, 2024. "Optimal Allocation of Water Resources Using Agro-Economic Development and Colony Optimization Algorithm," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
- Salah Elsayed & Mohamed Gad & Mohamed Farouk & Ali H. Saleh & Hend Hussein & Adel H. Elmetwalli & Osama Elsherbiny & Farahat S. Moghanm & Moustapha E. Moustapha & Mostafa A. Taher & Ebrahem M. Eid & M, 2021. "Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
- Zhang, Minne & Zhao, Weixia & Zhu, Changxin & Li, Jiusheng, 2024. "Influence of the sampling time interval of canopy temperature on the dynamic zoning of variable rate irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
- Ali Sardar Shahraki & Tommaso Caloiero & Ommolbanin Bazrafshan, 2023. "Influence of Climatic Factors on Yields of Pistachio, Mango, and Bananas in Iran," Sustainability, MDPI, vol. 15(11), pages 1-14, June.
- Xinyu Chang & Jun Guo & Hui Qin & Jingwei Huang & Xinying Wang & Pingan Ren, 2024. "Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3953-3972, August.
- Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
- Cheng, Minghan & Jiao, Xiyun & Liu, Yadong & Shao, Mingchao & Yu, Xun & Bai, Yi & Wang, Zixu & Wang, Siyu & Tuohuti, Nuremanguli & Liu, Shuaibing & Shi, Lei & Yin, Dameng & Huang, Xiao & Nie, Chenwei , 2022. "Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning," Agricultural Water Management, Elsevier, vol. 264(C).
- El-Hendawy, Salah E. & Al-Suhaibani, Nasser A. & Elsayed, Salah & Hassan, Wael M. & Dewir, Yaser Hassan & Refay, Yahya & Abdella, Kamel A., 2019. "Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates," Agricultural Water Management, Elsevier, vol. 217(C), pages 356-373.
- Melo, Leonardo Leite de & Melo, Verônica Gaspar Martins Leite de & Marques, Patrícia Angélica Alves & Frizzone, Jose Antônio & Coelho, Rubens Duarte & Romero, Roseli Aparecida Francelin & Barros, Timó, 2022. "Deep learning for identification of water deficits in sugarcane based on thermal images," Agricultural Water Management, Elsevier, vol. 272(C).
- Fan Ding & Changchun Li & Weiguang Zhai & Shuaipeng Fei & Qian Cheng & Zhen Chen, 2022. "Estimation of Nitrogen Content in Winter Wheat Based on Multi-Source Data Fusion and Machine Learning," Agriculture, MDPI, vol. 12(11), pages 1-16, October.
- Liyuan Zhang & Aichen Wang & Huiyue Zhang & Qingzhen Zhu & Huihui Zhang & Weihong Sun & Yaxiao Niu, 2024. "Estimating Leaf Chlorophyll Content of Winter Wheat from UAV Multispectral Images Using Machine Learning Algorithms under Different Species, Growth Stages, and Nitrogen Stress Conditions," Agriculture, MDPI, vol. 14(7), pages 1-17, July.
- Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).
- Mohamed E. Abowaly & Abdel-Aziz A. Belal & Enas E. Abd Elkhalek & Salah Elsayed & Rasha M. Abou Samra & Abdullah S. Alshammari & Farahat S. Moghanm & Kamal H. Shaltout & Saad A. M. Alamri & Ebrahem M., 2021. "Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination Indices, GIS, and Multivariate Modeling," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
More about this item
Keywords
feature fusion; machine learning; maize ( Zea mays L.); canopy chlorophyll content;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1265-:d:1447637. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.