IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v172y2022i1d10.1007_s10584-022-03375-2.html
   My bibliography  Save this article

How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?

Author

Listed:
  • Enli Wang

    (CSIRO Agriculture and Food)

  • Di He

    (CSIRO Agriculture and Food
    Chinese Academy of Meteorological Sciences
    China Agricultural University)

  • Jing Wang

    (China Agricultural University)

  • Julianne M. Lilley

    (CSIRO Agriculture and Food)

  • Brendan Christy

    (Department of Jobs, Precincts and Regions Victoria)

  • Munir P. Hoffmann

    (University of Goettingen
    Agvolution GmbH)

  • Garry O’Leary

    (Department of Jobs, Precincts and Regions Victoria)

  • Jerry L. Hatfield

    (USDA-ARS)

  • Luigi Ledda

    (Polytechnic University of Marche)

  • Paola A. Deligios

    (University of Sassari)

  • Brian Grant

    (Agriculture and Agri-Food Canada)

  • Qi Jing

    (Agriculture and Agri-Food Canada)

  • Claas Nendel

    (Leibniz Centre for Agricultural Landscape Research (ZALF)
    University of Potsdam
    The Czech Academy of Sciences)

  • Henning Kage

    (Kiel University)

  • Budong Qian

    (Agriculture and Agri-Food Canada)

  • Ehsan Eyshi Rezaei

    (University of Bonn
    Institute of Landscape Systems Analysis)

  • Ward Smith

    (Agriculture and Agri-Food Canada)

  • Wiebke Weymann

    (Kiel University)

  • Frank Ewert

    (University of Bonn
    Institute of Landscape Systems Analysis)

Abstract

To better understand how climate change might influence global canola production, scientists from six countries have completed the first inter-comparison of eight crop models for simulating growth and seed yield of canola, based on experimental data from six sites across five countries. A sensitivity analysis was conducted with a combination of five levels of atmospheric CO2 concentrations, seven temperature changes, five precipitation changes, together with five nitrogen application rates. Our results were in several aspects different from those of previous model inter-comparison studies for wheat, maize, rice, and potato crops. A partial model calibration only on phenology led to very poor simulation of aboveground biomass and seed yield of canola, even from the ensemble median or mean. A full calibration with additional data of leaf area index, biomass, and yield from one treatment at each site reduced simulation error of seed yield from 43.8 to 18.0%, but the uncertainty in simulation results remained large. Such calibration (with data from one treatment) was not able to constrain model parameters to reduce simulation uncertainty across the wide range of environments. Using a multi-model ensemble mean or median reduced the uncertainty of yield simulations, but the simulation error remained much larger than observation errors, indicating no guarantee that the ensemble mean/median would predict the correct responses. Using multi-model ensemble median, canola yield was projected to decline with rising temperature (2.5–5.7% per °C), but to increase with increasing CO2 concentration (4.6–8.3% per 100-ppm), rainfall (2.1–6.1% per 10% increase), and nitrogen rates (1.3–6.0% per 10% increase) depending on locations. Due to the large uncertainty, these results need to be treated with caution. We further discuss the need to collect new data to improve modelling of several key physiological processes of canola for increased confidence in future climate impact assessments.

Suggested Citation

  • Enli Wang & Di He & Jing Wang & Julianne M. Lilley & Brendan Christy & Munir P. Hoffmann & Garry O’Leary & Jerry L. Hatfield & Luigi Ledda & Paola A. Deligios & Brian Grant & Qi Jing & Claas Nendel & , 2022. "How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change?," Climatic Change, Springer, vol. 172(1), pages 1-22, May.
  • Handle: RePEc:spr:climat:v:172:y:2022:i:1:d:10.1007_s10584-022-03375-2
    DOI: 10.1007/s10584-022-03375-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03375-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03375-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    2. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    3. van Duren, Iris & Voinov, Alexey & Arodudu, Oludunsin & Firrisa, Melese Tesfaye, 2015. "Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency," Renewable Energy, Elsevier, vol. 74(C), pages 49-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taotao Yang & Jixiang Zou & Longmei Wu & Xiaozhe Bao & Yu Jiang & Nan Zhang & Bin Zhang, 2024. "Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China," Agriculture, MDPI, vol. 14(6), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    2. Manogna R. L. & Aswini Kumar Mishra, 2022. "Agricultural production efficiency of Indian states: Evidence from data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4244-4255, October.
    3. Rada, Nicholas E., 2013. "Agricultural Growth in India: Examining the Post-Green Revolution Transition," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149547, Agricultural and Applied Economics Association.
    4. Terrance Hurley & Jawoo Koo & Kindie Tesfaye, 2018. "Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub‐Saharan Africa?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 711-723, November.
    5. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    6. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    7. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    8. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    9. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    10. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    12. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    13. Michelson, Hope & Fairbairn, Anna & Ellison, Brenna & Maertens, Annemie & Manyong, Victor, 2021. "Misperceived quality: Fertilizer in Tanzania," Journal of Development Economics, Elsevier, vol. 148(C).
    14. Margaux Lapierre & Alexandre Sauquet & Julie Subervie, 2019. "Providing technical assistance to peer networks to reduce pesticide use in Europe: Evidence from the French Ecophyto plan," Working Papers hal-02190979, HAL.
    15. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    16. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Jean‐Paul Chavas & Giorgia Rivieccio & Salvatore Di Falco & Giovanni De Luca & Fabian Capitanio, 2022. "Agricultural diversification, productivity, and food security across time and space," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 41-58, November.
    18. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    19. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    20. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:172:y:2022:i:1:d:10.1007_s10584-022-03375-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.