IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i15p2700-d252576.html
   My bibliography  Save this article

Comprehensive Environmental Assessment of Potato as Staple Food Policy in China

Author

Listed:
  • Bing Gao

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China)

  • Wei Huang

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaobo Xue

    (Department of Environmental Health Sciences, State University of New York at Albany, NY 12144, USA)

  • Yuanchao Hu

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China)

  • Yunfeng Huang

    (School of Biotechnology Engineering, Jimei University, Xiamen 361021, China)

  • Lan Wang

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shengping Ding

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shenghui Cui

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China)

Abstract

The Chinese government projected 30% of total consumed potatoes as a staple food (PSF) by 2020. We comprehensively assessed the potential impacts of PSF on rice and flour consumption, rice and wheat planting, energy and nutrient supply, irrigation-water, chemical nitrogen (N), phosphorus pentoxide (P 2 O 5 ) and potassium oxide (K 2 O) fertilizer inputs and total greenhouse gases (GHG) emission for potatoes, rice and wheat, by assuming different proportions of potato substitutes for rice and flour. The results showed that per capita, 2.9 ± 0.3 and 4.7 ± 0.5 kg more potatoes per year would enter the Chinese staple-food diet, under the government’s target. PSF consumed are expected to reach 5.2 ± 0.7 Tg yr −1 , equivalent to substituting potatoes for 4.2 ± 0.8–8.5 ± 0.8 Tg yr −1 wheat and 5.1 ± 0.9–10.1 ± 1.8 Tg yr −1 rice under different scenarios. While this substitution can increase the nutrient supply index by 63% towards nutrient reference values, it may induce no significant effect on staple-food energy supply with lower chemical fertilizer (except for K 2 O) and irrigation-water inputs and GHG emissions in different substitution scenarios than the business as usual scenario. The reduction in rice and wheat demands lead to wheat in the North China Plain and early rice decrease by 6.1–11.4% and 12.1–24.1%, respectively. The total GHG reduction is equal to 1.1–9.0% of CO 2 equivalent associated with CH 4 and N 2 O emitted from the Chinese agroecosystem in 2005. The saved irrigation water for three crops compared to 2012 reaches the total water use of 17.9 ± 4.9–21.8 ± 5.9 million people in 2015. More N fertilizer, irrigation-water, and GHG can be reduced, if the PSF ratio is increased to 50% together with potato yield improves to the optimal level. Our results implied that the PSF policy is worth doing not only because of the healthier diets, but also to mitigate resource inputs and GHG emissions and it also supports agricultural structure adjustments in the areas of irrigated wheat on the North China Plain and early rice across China, designed to increase the adaptability to climate change.

Suggested Citation

  • Bing Gao & Wei Huang & Xiaobo Xue & Yuanchao Hu & Yunfeng Huang & Lan Wang & Shengping Ding & Shenghui Cui, 2019. "Comprehensive Environmental Assessment of Potato as Staple Food Policy in China," IJERPH, MDPI, vol. 16(15), pages 1-19, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2700-:d:252576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/15/2700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/15/2700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weifeng Zhang & Guoxin Cao & Xiaolin Li & Hongyan Zhang & Chong Wang & Quanqing Liu & Xinping Chen & Zhenling Cui & Jianbo Shen & Rongfeng Jiang & Guohua Mi & Yuxin Miao & Fusuo Zhang & Zhengxia Dou, 2016. "Closing yield gaps in China by empowering smallholder farmers," Nature, Nature, vol. 537(7622), pages 671-674, September.
    2. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiquan Xu & Yanzhi Guo & Shijun Lu & Yunqian Ma & Xiuli Wang & Liyun Zhao & Junmao Sun, 2020. "Effect of Steamed Potato Bread Intake on Glucose, Lipids, and Urinary Na + and K + : A Randomized Controlled Trial with Adolescents," IJERPH, MDPI, vol. 17(6), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    2. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    3. Shilei Cui & Yajuan Li & Xiaoqiang Jiao & Dong Zhang, 2022. "Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    4. Yimin Hu & Shuqi Yang & Xin Qian & Zongxin Li & Yuchuan Fan & Kiril Manevski & Yuanquan Chen & Wangsheng Gao, 2023. "Bibliometric Network Analysis of Crop Yield Gap Research over the Past Three Decades," Agriculture, MDPI, vol. 13(11), pages 1-16, November.
    5. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).
    6. Li, Jianzheng & Wang, Ligang & Luo, Zhongkui & Wang, Enli & Wang, Guocheng & Zhou, Han & Li, Hu & Xu, Shiwei, 2021. "Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM," Agricultural Systems, Elsevier, vol. 194(C).
    7. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    8. Wang, Hongzhang & Ren, Hao & Han, Kun & Li, Geng & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "Improving the net energy and energy utilization efficiency of maize production systems in the North China Plain," Energy, Elsevier, vol. 274(C).
    9. Liang Chi & Shuqing Han & Meili Huan & Yajuan Li & Jifang Liu, 2022. "Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China," IJERPH, MDPI, vol. 19(13), pages 1-17, July.
    10. Sha Feng & Dandan Fu & Xinru Han & Xiudong Wang, 2022. "Impacts of the Extension of Cassava Soil Conservation and Efficient Technology on the Reduction of Chemical Fertilizer Input in China," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    11. Taotao Yang & Jixiang Zou & Longmei Wu & Xiaozhe Bao & Yu Jiang & Nan Zhang & Bin Zhang, 2024. "Experimental Warming Reduces the Grain Yield and Nitrogen Utilization Efficiency of Double-Cropping indica Rice in South China," Agriculture, MDPI, vol. 14(6), pages 1-12, June.
    12. Zhao, Zhanqing & Qin, Wei & Bai, Zhaohai & Ma, Lin, 2019. "Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 262-272.
    13. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    14. Bruna Moreira & Alexandre Gonçalves & Luís Pinto & Miguel A. Prieto & Márcio Carocho & Cristina Caleja & Lillian Barros, 2024. "Intercropping Systems: An Opportunity for Environment Conservation within Nut Production," Agriculture, MDPI, vol. 14(7), pages 1-23, July.
    15. Yuewen Huo & Songlin Ye & Zhou Wu & Fusuo Zhang & Guohua Mi, 2022. "Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    16. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    17. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    18. Qingzhen Zhu & Zhihao Zhu & Hengyuan Zhang & Yuanyuan Gao & Liping Chen, 2023. "Design of an Electronically Controlled Fertilization System for an Air-Assisted Side-Deep Fertilization Machine," Agriculture, MDPI, vol. 13(12), pages 1-12, November.
    19. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    20. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:15:p:2700-:d:252576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.