IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p298-d1337955.html
   My bibliography  Save this article

Habitat Diversity Increases Chrysoperla carnea s.l. (Stephens, 1836) (Neuroptera, Chrysopidae) Abundance in Olive Landscapes

Author

Listed:
  • Daniel Paredes

    (Environmental Research Analysis Group, Department of Plant Biology, Ecology and Earth Sciences, University of Extremadura, Av. de Elvas, 06006 Badajoz, Spain
    Centre for Functional Ecology, Associated Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal)

  • Sara Mendes

    (Centre for Functional Ecology, Associated Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal)

  • José Paulo Sousa

    (Centre for Functional Ecology, Associated Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal)

Abstract

Chrysoperla carnea s.l. , a vital predator in olive groves, plays a key role in reducing the reliance on pesticides. Despite its efficacy, habitat diversification at the landscape level can compromise its effectiveness as a generalist natural enemy, diverting its attention from olive pests to other resources. To unravel its habitat preferences and maximize biocontrol services, a comprehensive study was conducted, collecting specimens monthly across diverse habitats in a Portuguese olive grove landscape. These habitats included shrublands, “montado,” grasslands, eucalyptus and pine forests, vineyards, and olive groves. The findings revealed C. carnea s.l. displayed a widespread presence in all habitats, with peak abundance initially observed in olive groves, coinciding with the presence of its preferred prey, Prays oleae . However, the peak abundance of this species varies among habitats, with the highest numbers initially observed in olive groves, gradually decreasing throughout the summer and reaching the lowest levels in vineyards. Significantly, habitat diversification at the landscape level contributes to an increased abundance of C. carnea s.l. in olive groves. This suggests that diversifying available resources aids in sustaining natural enemy populations in proximity to the targeted crop, thereby enhancing their efficacy in pest control. Consequently, we advocate for stakeholders in olive cultivation to promote landscape-scale habitat diversity by preserving, restoring, or fostering alternative habitats surrounding olive groves.

Suggested Citation

  • Daniel Paredes & Sara Mendes & José Paulo Sousa, 2024. "Habitat Diversity Increases Chrysoperla carnea s.l. (Stephens, 1836) (Neuroptera, Chrysopidae) Abundance in Olive Landscapes," Agriculture, MDPI, vol. 14(2), pages 1-11, February.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:298-:d:1337955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    2. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp F. M. Baumann & Enzo Rossi & Alexander Volkmann, 2020. "What Drives Inflation and How: Evidence from Additive Mixed Models Selected by cAIC," Papers 2006.06274, arXiv.org, revised Aug 2022.
    2. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    3. Swen P. M. Bos & Tina Cornioley & Anne Dray & Patrick O. Waeber & Claude A. Garcia, 2020. "Exploring Livelihood Strategies of Shifting Cultivation Farmers in Assam through Games," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    4. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    5. Thomas A. Verschut & Renny Ng & Nicolas P. Doubovetzky & Guillaume Calvez & Jan L. Sneep & Adriaan J. Minnaard & Chih-Ying Su & Mikael A. Carlsson & Bregje Wertheim & Jean-Christophe Billeter, 2023. "Aggregation pheromones have a non-linear effect on oviposition behavior in Drosophila melanogaster," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    7. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    8. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    9. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    11. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    12. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    13. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    15. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    16. Tommaso Luzzati & Angela Parenti & Tommaso Rughi, 2017. "Spatial error regressions for testing the Cancer-EKC," Discussion Papers 2017/218, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    17. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    18. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    20. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:298-:d:1337955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.