IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i1p136-d1320401.html
   My bibliography  Save this article

Autonecrotic Tomato ( Solanum lycopersicum L.) Line as a Potential Model for Applications in Proximal Sensing of Biotic and Abiotic Stress

Author

Listed:
  • Enrico Santangelo

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Angelo Del Giudice

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Simone Figorilli

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Simona Violino

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Corrado Costa

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Marco Bascietto

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Simone Bergonzoli

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Claudio Beni

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

Abstract

The autonecrotic tomato line V20368 (working code IGSV) spontaneously develops necrotic lesions with acropetal progression in response to an increase in temperature and light irradiation. The process is associated with the interaction between tomato and Cladosporium fulvum , the fungal agent of leaf mold. The contemporary presence of an in-house allele encoding the Rcr3 lyc protein and the resistance gene Cf-2 pim (from Solanum pimpinellifolium ) causes auto-necrosis on the leaves even in the absence of the pathogen (hybrid necrosis). The aim of the work was (i) to examine the potential value of the necrotic genotype as a model system for setting up theoretical guidance for monitoring the phytosanitary status of tomato plants and (ii) to develop a predictive model for the early detection of pathogens (or other stresses) in the tomato or other species. Eighteen IGSV tomato individuals at the 4–5th true-leaf stage were grown in three rows (six plants per row) considered to be replicates. The healthy control was the F1 hybrid Elisir (Olter). A second mutant line (SA410) deriving from a cross between the necrotic mutant and a mutant line of the lutescent ( l ) gene was used during foliar analysis via microspectrometry. The leaves of the mutants and normal plants were monitored through a portable VIS/NIR spectrometer SCIO TM (Consumer Physics, Tel Aviv, Israel) covering a spectral range between 740 and 1070 nm. Two months after the transplant, the acropetal progression of the autonecrosis showed three symptomatic areas (basal, median, apical) on each IGSV plant: necrotic, partially damaged, and green, respectively. Significantly lower chlorophyll content was found in the basal and median areas of IGSV compared with the control (Elisir). A supervised classification/modelling method (SIMCA) was used. Applying the SIMCA model to the dataset of 162 tomato samples led to the identification of the boundary between the healthy and damaged samples (translational critical distance). Two 10 nm wavelength ranges centred at 865 nm and 1055 nm exhibited a stronger link between symptomatology and spectral reflectance. Studies on specific highly informative mutants of the type described may allow for the development of predictive models for the early detection of pathogens (or other stresses) via proximal sensing.

Suggested Citation

  • Enrico Santangelo & Angelo Del Giudice & Simone Figorilli & Simona Violino & Corrado Costa & Marco Bascietto & Simone Bergonzoli & Claudio Beni, 2024. "Autonecrotic Tomato ( Solanum lycopersicum L.) Line as a Potential Model for Applications in Proximal Sensing of Biotic and Abiotic Stress," Agriculture, MDPI, vol. 14(1), pages 1-19, January.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:1:p:136-:d:1320401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/1/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/1/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    2. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    4. Soohyun Oh & Myung-Shin Kim & Hui Jeong Kang & Taewon Kim & Junhyeong Kong & Doil Choi, 2024. "Conserved effector families render Phytophthora species vulnerable to recognition by NLR receptors in nonhost plants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    6. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Md Mijanur Rahman Rajib & Kuikui Li & Md Saikat Hossain Bhuiyan & Wenxia Wang & Jin Gao & Heng Yin, 2024. "Konjac Glucomannan Oligosaccharides (KGMOS) Confers Innate Immunity against Phytophthora nicotianae in Tobacco," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
    8. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    9. Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    10. Fabien Lonjon & Yan Lai & Nasrin Askari & Niharikaa Aiyar & Cedoljub Bundalovic-Torma & Bradley Laflamme & Pauline W. Wang & Darrell Desveaux & David S. Guttman, 2024. "The effector-triggered immunity landscape of tomato against Pseudomonas syringae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    12. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    13. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    14. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    15. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    16. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    17. Jianghua Cai & Sayantan Panda & Yana Kazachkova & Eden Amzallag & Zhengguo Li & Sagit Meir & Ilana Rogachev & Asaph Aharoni, 2024. "A NAC triad modulates plant immunity by negatively regulating N-hydroxy pipecolic acid biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Beatriz Val-Torregrosa & Mireia Bundó & Blanca San Segundo, 2021. "Crosstalk between Nutrient Signalling Pathways and Immune Responses in Rice," Agriculture, MDPI, vol. 11(8), pages 1-21, August.
    19. Sisay Kidane Alemu & Ayele Badebo Huluka & Kassahun Tesfaye & Teklehaimanot Haileselassie & Cristobal Uauy, 2021. "Genome-wide association mapping identifies yellow rust resistance loci in Ethiopian durum wheat germplasm," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-28, May.
    20. Adeeb Rahman & Neeti Sanan-Mishra, 2024. "When an Intruder Comes Home: GM and GE Strategies to Combat Virus Infection in Plants," Agriculture, MDPI, vol. 14(2), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:1:p:136-:d:1320401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.