IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i1p136-d1320401.html
   My bibliography  Save this article

Autonecrotic Tomato ( Solanum lycopersicum L.) Line as a Potential Model for Applications in Proximal Sensing of Biotic and Abiotic Stress

Author

Listed:
  • Enrico Santangelo

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Angelo Del Giudice

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Simone Figorilli

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Simona Violino

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Corrado Costa

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Marco Bascietto

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Simone Bergonzoli

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

  • Claudio Beni

    (Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, CREA-IT, via della Pascolare 16, 00015 Monterotondo, Italy)

Abstract

The autonecrotic tomato line V20368 (working code IGSV) spontaneously develops necrotic lesions with acropetal progression in response to an increase in temperature and light irradiation. The process is associated with the interaction between tomato and Cladosporium fulvum , the fungal agent of leaf mold. The contemporary presence of an in-house allele encoding the Rcr3 lyc protein and the resistance gene Cf-2 pim (from Solanum pimpinellifolium ) causes auto-necrosis on the leaves even in the absence of the pathogen (hybrid necrosis). The aim of the work was (i) to examine the potential value of the necrotic genotype as a model system for setting up theoretical guidance for monitoring the phytosanitary status of tomato plants and (ii) to develop a predictive model for the early detection of pathogens (or other stresses) in the tomato or other species. Eighteen IGSV tomato individuals at the 4–5th true-leaf stage were grown in three rows (six plants per row) considered to be replicates. The healthy control was the F1 hybrid Elisir (Olter). A second mutant line (SA410) deriving from a cross between the necrotic mutant and a mutant line of the lutescent ( l ) gene was used during foliar analysis via microspectrometry. The leaves of the mutants and normal plants were monitored through a portable VIS/NIR spectrometer SCIO TM (Consumer Physics, Tel Aviv, Israel) covering a spectral range between 740 and 1070 nm. Two months after the transplant, the acropetal progression of the autonecrosis showed three symptomatic areas (basal, median, apical) on each IGSV plant: necrotic, partially damaged, and green, respectively. Significantly lower chlorophyll content was found in the basal and median areas of IGSV compared with the control (Elisir). A supervised classification/modelling method (SIMCA) was used. Applying the SIMCA model to the dataset of 162 tomato samples led to the identification of the boundary between the healthy and damaged samples (translational critical distance). Two 10 nm wavelength ranges centred at 865 nm and 1055 nm exhibited a stronger link between symptomatology and spectral reflectance. Studies on specific highly informative mutants of the type described may allow for the development of predictive models for the early detection of pathogens (or other stresses) via proximal sensing.

Suggested Citation

  • Enrico Santangelo & Angelo Del Giudice & Simone Figorilli & Simona Violino & Corrado Costa & Marco Bascietto & Simone Bergonzoli & Claudio Beni, 2024. "Autonecrotic Tomato ( Solanum lycopersicum L.) Line as a Potential Model for Applications in Proximal Sensing of Biotic and Abiotic Stress," Agriculture, MDPI, vol. 14(1), pages 1-19, January.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:1:p:136-:d:1320401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/1/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/1/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng Yang & Weiwei Cai & Ruijie Wu & Yu Huang & Qiaoling Lu & Hui Wang & Xueying Huang & Yapeng Zhang & Qing Wu & Xingge Cheng & Meiyun Wan & Jingang Lv & Qian Liu & Xiang Zheng & Shaoliang Mou & Dey, 2023. "Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Jiahui Liu & Xiaoyun Wu & Yue Fang & Ye Liu & Esther Oreofe Bello & Yong Li & Ruyi Xiong & Yinzi Li & Zheng Qing Fu & Aiming Wang & Xiaofei Cheng, 2023. "A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    4. Norliza Abu-Bakar & Nor Mustaiqazah Juri & Ros Azrinawati Hana Abu-Bakar & Mohd Zulfadli Sohaime & Rafidah Badrun & Johari Sarip & Mohd Azhar Hassan & Khairulmazmi Ahmad, 2021. "Recombinant Protein Foliar Application Activates Systemic Acquired Resistance and Increases Tolerance against Papaya Dieback Disease," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 11(1), pages 1-9, March.
    5. Xin Tong & Jia-Jia Zhao & Ya-Lan Feng & Jing-Ze Zou & Jian Ye & Junfeng Liu & Chenggui Han & Dawei Li & Xian-Bing Wang, 2023. "A selective autophagy receptor VISP1 induces symptom recovery by targeting viral silencing suppressors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    9. Jincai Qiu & Yongshan Chen & Ying Feng & Xiaofeng Li & Jinghua Xu & Jinping Jiang, 2023. "Adaptation of Rhizosphere Microbial Communities to Continuous Exposure to Multiple Residual Antibiotics in Vegetable Farms," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    10. Arsheed H. Sheikh & Iosif Zacharia & Alonso J. Pardal & Ana Dominguez-Ferreras & Daniela J. Sueldo & Jung-Gun Kim & Alexi Balmuth & Jose R. Gutierrez & Brendon F. Conlan & Najeeb Ullah & Olivia M. Nip, 2023. "Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    13. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Veronika DUMALASOVÁ & Leona SVOBODOVÁ & Alena HANZALOVÁ, 2012. "Differentially expressed gene transcripts in wheat and barley leaves upon leaf spot infection," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 48(3), pages 108-119.
    15. Mariam Amouzoune & Sajid Rehman & Rachid Benkirane & Swati Verma & Sanjaya Gyawali & Muamar Al-Jaboobi & Ramesh Pal Singh Verma & Zakaria Kehel & Ahmed Amri, 2022. "Genome-Wide Association Study of Leaf Rust Resistance at Seedling and Adult Plant Stages in a Global Barley Panel," Agriculture, MDPI, vol. 12(11), pages 1-26, November.
    16. Baokuan Xu & Xiyan Liu & Xuejiao Song & Qifang Guo & Yongqi Yin & Chunqing Zhang & Yan Li, 2022. "High-Vigor Maize Seeds Resist Fusarium graminearum Infection through Stronger Ca 2+ Signaling," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
    17. Shota Iwasaki & Naoko Okada & Yutaka Kimura & Yoshihiro Takikawa & Tomoko Suzuki & Koji Kakutani & Yoshinori Matsuda & Yuling Bai & Teruo Nonomura, 2022. "Simultaneous Detection of Plant- and Fungus-Derived Genes Constitutively Expressed in Single Pseudoidium neolycopersici -Inoculated Type I Trichome Cells of Tomato Leaves via Multiplex RT-PCR and Nest," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    18. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    19. Chantal Gascuel & Michèle Tixier-Boichard & Benoit Dedieu & Cécile Détang-Dessendre & Pierre Dupraz & Philippe Faverdin & Laurent Hazard & Philippe Hinsinger & Isabelle Litrico-Chiarelli & Françoise M, 2019. "Réflexion prospective interdisciplinaire pour l’agroécologie. Rapport de synthèse," Post-Print hal-02154433, HAL.
    20. Wenhao Li & Hongwei Zhu & Jinzhu Chen & Binglu Ru & Qin Peng & Jianqiang Miao & Xili Liu, 2024. "PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:1:p:136-:d:1320401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.