IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i12p2319-d1545780.html
   My bibliography  Save this article

Effects of Seven-Year-Optimized Irrigation and Nitrogen Management on Dynamics of Soil Organic Nitrogen Fractions, Soil Properties, and Crop Growth in Greenhouse Production

Author

Listed:
  • Jianshuo Shi

    (Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
    Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051, China)

  • Longgang Jiang

    (Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
    Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051, China)

  • Liying Wang

    (Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
    Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051, China)

  • Chengzhang Wang

    (Yellow River Institute of Eco–Environmental Research, Zhengzhou 450004, China)

  • Ruonan Li

    (Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
    Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051, China)

  • Lijia Pan

    (Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
    Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051, China)

  • Tianyuan Jia

    (School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China)

  • Shenglin Hou

    (Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
    Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051, China)

  • Zhou Jia

    (Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
    Hebei Fertilizer Technology Innovation Center, Shijiazhuang 050051, China)

Abstract

Exploring the temporal evolution dynamics of different soil organic nitrogen (N) components under different water–N management practices is a useful approach to accurately assessing N supply and soil fertility. This information can provide a scientific basis for precise water and N management methods for greenhouse vegetable production. The objective of this study was to investigate the effects of optimized irrigation and nitrogen management on the dynamics of soil organic nitrogen fractions, soil properties, and crop growth. This research was conducted from 2017 to 2023 in a greenhouse vegetable field in North China. Four treatments were applied: (1) high chemical N application with furrow irrigation (farmers’ practice, FP); (2) no chemical N application with drip irrigation (DN0); (3) 50% N of FP with drip irrigation (DN1); and (4) 75% N of FP with drip irrigation (DN2). The volume in drip irrigation is 70% of that in furrow irrigation. The results showed that in 2023 (after seven years of field trials), compared with FP, the soil organic carbon (SOC), total N, and water use efficiency of the DN1 and DN2 treatments increased by 15.9%, 11.4%, and 11.3% and 7.7%, 47.2% and 44.6%, respectively. However, there was no significant difference in the total crop yield except in the DN0 treatment. Soil organic N was mostly in the form of acid-hydrolyzed N (AHN). After seven years of optimized irrigation and N management, the DN1 treatment significantly increased the content of ammonium N (AN) and amino sugar N (ASN) in AHN compared with the FP treatment. The results of further analysis demonstrated that SOC was the main factor in regulating AHN and non-hydrolyzable N (NHN), while the main regulatory factors for amino acid N (AAN) and ASN in the AHN component were dry biomass and water use efficiency, respectively. From a time scale perspective, optimization of the water and N scheduling, especially in DN1 (reducing the total irrigation volume by 30% and the amount of N applied by 50%), is crucial for the sustainable improvement of soil fertility and the maintenance of vegetable production.

Suggested Citation

  • Jianshuo Shi & Longgang Jiang & Liying Wang & Chengzhang Wang & Ruonan Li & Lijia Pan & Tianyuan Jia & Shenglin Hou & Zhou Jia, 2024. "Effects of Seven-Year-Optimized Irrigation and Nitrogen Management on Dynamics of Soil Organic Nitrogen Fractions, Soil Properties, and Crop Growth in Greenhouse Production," Agriculture, MDPI, vol. 14(12), pages 1-16, December.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2319-:d:1545780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/12/2319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/12/2319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    2. Li, Xiaoliang & Liu, Fulai & Li, Guitong & Lin, Qimei & Jensen, Christian R., 2010. "Soil microbial response, water and nitrogen use by tomato under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(3), pages 414-418, December.
    3. Chen, Yi-min & Zhang, Jin-yuan & Xu, Xin & Qu, Hong-yun & Hou, Meng & Zhou, Ke & Jiao, Xiao-guang & Sui, Yue-yu, 2018. "Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China," Agricultural Water Management, Elsevier, vol. 210(C), pages 165-170.
    4. Wu, Hanqing & Du, Shiyu & Zhang, Yuling & An, Jing & Zou, Hongtao & Zhang, Yulong & Yu, Na, 2019. "Effects of irrigation and nitrogen fertilization on greenhouse soil organic nitrogen fractions and soil-soluble nitrogen pools," Agricultural Water Management, Elsevier, vol. 216(C), pages 415-424.
    5. Li YAN & Hui LI & Jinjing ZHANG & Zhidan ZHANG & Ping ZHU & Qiang GAO & Wenxi LU, 2016. "Response of organic nitrogen in Black Soil to long-term different fertilization and tillage practices in Northeast China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(2), pages 124-130.
    6. Wang, Yaosheng & Janz, Baldur & Engedal, Tine & Neergaard, Andreas de, 2017. "Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize," Agricultural Water Management, Elsevier, vol. 179(C), pages 271-276.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Hanqing & Du, Shiyu & Zhang, Yuling & An, Jing & Zou, Hongtao & Zhang, Yulong & Yu, Na, 2019. "Effects of irrigation and nitrogen fertilization on greenhouse soil organic nitrogen fractions and soil-soluble nitrogen pools," Agricultural Water Management, Elsevier, vol. 216(C), pages 415-424.
    2. Chen, Shuaihong & Zhang, Shaowu & Li, Hui & Hu, Tiantian & Sun, Guangzhao & Cui, Xiaolu & Liu, Jie, 2024. "Optimizing irrigation and nitrogen management improves soil soluble nitrogen pools and reduces nitrate residues in a drip-fertigated apple orchard on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Yu, Yaze & Jiao, Yan & Yang, Wenzhu & Song, Chunni & Zhang, Jing & Liu, Yubin, 2022. "Mechanisms underlying nitrous oxide emissions and nitrogen leaching from potato fields under drip irrigation and furrow irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    6. Nguyen, Van Thang & Huynh, Nguyen Phong Thu & Vu, Ngoc Ba & Le, Cong Hao, 2021. "Long-term accumulation of 226Ra in some agricultural soils based on model assessment," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Sun, Guangzhao & Chen, Shuaihong & Zhang, Shaowu & Chen, Shaomin & Liu, Jie & He, Qiong & Hu, Tiantian & Zhang, Fucang, 2024. "Responses of leaf nitrogen status and leaf area index to water and nitrogen application and their relationship with apple orchard productivity," Agricultural Water Management, Elsevier, vol. 296(C).
    8. Zhang, Jing & Wang, Qian & Pang, Xiao Pan & Xu, Hai Peng & Wang, Juan & Zhang, Wen Na & Guo, Zheng Gang, 2021. "Effect of partial root-zone drying irrigation (PRDI) on the biomass, water productivity and carbon, nitrogen and phosphorus allocations in different organs of alfalfa," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Ahmmed Md Motasim & Abd Wahid Samsuri & Arina Shairah Abdul Sukor & Amin Mohd Adibah, 2021. "Gaseous Nitrogen Losses from Tropical Soils with Liquid or Granular Urea Fertilizer Application," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    12. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    13. Cary, L. & Surdyk, N. & Psarras, G. & Kasapakis, I. & Chartzoulakis, K. & Sandei, L. & Guerrot, C. & Pettenati, M. & Kloppmann, W., 2015. "Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures," Agricultural Water Management, Elsevier, vol. 155(C), pages 87-99.
    14. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Sun, Libo & Chang, Xiaomin & Yu, Xinxiao & Jia, Guodong & Chen, Lihua & Wang, Yusong & Liu, Ziqiang, 2021. "Effect of freeze-thaw processes on soil water transport of farmland in a semi-arid area," Agricultural Water Management, Elsevier, vol. 252(C).
    16. Bai, Tiecheng & Zhang, Nannan & Wang, Tao & Wang, Desheng & Yu, Caili & Meng, Wenbo & Fei, Hao & Chen, Rengu & Li, Yanhui & Zhou, Baoping, 2021. "Simulating on the effects of irrigation on jujube tree growth, evapotranspiration and water use based on crop growth model," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Bitopi Biswas & Mohammad Tariful Alam Khan & Mohammad Billal Hossain Momen & Mohammad. Rashedur Rahman Tanvir & Abu Mohammad Shahidul Alam & M Robiul Islam Islam, 2024. "Advancements in fuzzy expert systems for site-specific nitrogen fertilisation: Incorporating RGB colour codes and irrigation schedules for precision maize production in Bangladesh," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(3), pages 155-166.
    18. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    19. Jalil Sheshbahreh, Marziyeh & Movahhedi Dehnavi, Mohsen & Salehi, Amin & Bahreininejad, Babak, 2019. "Effect of irrigation regimes and nitrogen sources on biomass production, water and nitrogen use efficiency and nutrients uptake in coneflower (Echinacea purpurea L.)," Agricultural Water Management, Elsevier, vol. 213(C), pages 358-367.
    20. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2319-:d:1545780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.