IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1994-d1515438.html
   My bibliography  Save this article

Movement Characteristics of Droplet Deposition in Flat Spray Nozzle for Agricultural UAVs

Author

Listed:
  • Shiyun Hu

    (College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
    National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China)

  • Xiaojie Xu

    (College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
    National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China)

  • Junyu Liu

    (College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
    National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China)

  • Jianzhou Guo

    (College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
    National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China)

  • Runhong Guan

    (College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
    National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China)

  • Zhiyan Zhou

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Yubin Lan

    (College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
    National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China)

  • Shengde Chen

    (College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China
    National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, South China Agricultural University, Guangzhou 510642, China)

Abstract

At present, research on aerial spraying operations with UAVs mainly focuses on the deposition outcomes of droplets, with insufficient depth in the exploration of the movement process of droplet deposition. The movement characteristics of droplet deposition as the most fundamental factors affecting the effectiveness of pesticide application by UAVs are of great significance for improving droplet deposition. This study takes flat spray nozzles as the research object, uses the Particle Image Velocimetry (PIV) technique to obtain movement data of water droplet deposition under the influence of rotor flow fields, and investigates the variation characteristics of droplet deposition speed under different influencing factors. The results show that the deposition speed and the distribution area of high-speed (>12 m/s) particles increase with the increase of rotor speed, spraying pressure, and nozzle size. When the rotor speed increases from 0 r/min to 1800 r/min, the average increase in maximum droplet deposition speed for nozzle models LU120-02, LU120-03 and LU120-04 is 33.26%, 19.02%, and 7.62%, respectively. The rotor flow field significantly increases the number of high-speed droplets, making the dispersed droplet velocity distribution more concentrated. When the rotor speed is 0, 1000, 1500, and 1800 r/min, the average decay rates of droplet deposition speed are 36.72%, 20.00%, 15.47%, and 13.21%, respectively, indicating that the rotor flow field helps to reduce the decrease in droplet deposition speed, enabling droplets to deposit on the target area at a higher speed, reducing drift risk and evaporation loss. This study’s results are beneficial for revealing the mechanism of droplet deposition movement in aerial spraying by plant protection UAVs, improving the understanding of droplet movement, and providing data support and guidance for precise spraying operations.

Suggested Citation

  • Shiyun Hu & Xiaojie Xu & Junyu Liu & Jianzhou Guo & Runhong Guan & Zhiyan Zhou & Yubin Lan & Shengde Chen, 2024. "Movement Characteristics of Droplet Deposition in Flat Spray Nozzle for Agricultural UAVs," Agriculture, MDPI, vol. 14(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1994-:d:1515438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muyesaier Tudi & Huada Daniel Ruan & Li Wang & Jia Lyu & Ross Sadler & Des Connell & Cordia Chu & Dung Tri Phung, 2021. "Agriculture Development, Pesticide Application and Its Impact on the Environment," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    2. Zongru Liu & Rong Gao & Yinwei Zhao & Han Wu & Yunting Liang & Ke Liang & Dong Liu & Taoran Huang & Shaoqiang Xie & Jia Lv & Jiyu Li, 2024. "Study on the Characteristics of Downwash Field Range and Consistency of Spray Deposition of Agricultural UAVs," Agriculture, MDPI, vol. 14(6), pages 1-29, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Chen & Jie Zhang & Hongtao Wang & Lingyun Li & Meizhen Yin & Jie Shen & Shuo Yan & Baoyou Liu, 2024. "Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management," Agriculture, MDPI, vol. 14(7), pages 1-16, June.
    2. Tianheng Jiang & Maomao Wang & Wei Zhang & Cheng Zhu & Feijuan Wang, 2024. "A Comprehensive Analysis of Agricultural Non-Point Source Pollution in China: Current Status, Risk Assessment and Management Strategies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    3. Giuseppe Gattuso & Luca Falzone & Chiara Costa & Federica Giambò & Michele Teodoro & Silvia Vivarelli & Massimo Libra & Concettina Fenga, 2022. "Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p," IJERPH, MDPI, vol. 19(12), pages 1-10, June.
    4. Wanglin Ma & Hongyun Zheng & Amaka Nnaji, 2023. "Cooperative membership and adoption of green pest control practices: Insights from rice farmers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(3), pages 459-479, July.
    5. Qi Zhou, 2022. "Spatial-Temporal Change Characteristic Analysis and Environmental Risk Evaluation of Pesticide Application in Anhui Province," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    6. Xiuju Feng & Yunchen Zheng & Woraphon Yamaka & Jianxu Liu, 2024. "How Does Agricultural Green Transformation Improve Residents’ Health? Empirical Evidence from China," Agriculture, MDPI, vol. 14(7), pages 1-15, July.
    7. Mergoni, Anna & Dipierro, Anna Rita & Colamartino, Chiara, 2024. "European agricultural sector: The tortuous path across efficiency, sustainability and environmental risk," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    8. Boesing, Andrea Larissa & Klaus, Valentin H. & Neyret, Margot & Le Provost, Gaëtane & Peter, Sophie & Fischer, Markus & Manning, Peter, 2024. "Identifying the optimal landscape configuration for landscape multifunctionality," Ecosystem Services, Elsevier, vol. 67(C).
    9. Arsene Mushagalusa Balasha & Aganze Mulume Dominique & Weremubi Mwisha Sage & Sharufa Mukonde Shadya & Janvier Zirhumana Mugisho, 2023. "Pesticide Choice and Use Patterns Among Vegetable Farmers on Idjwi Island, Eastern Democratic Republic of Congo," SAGE Open, , vol. 13(4), pages 21582440231, December.
    10. Inês Costa-Pereira & Ana A. R. M. Aguiar & Fernanda Delgado & Cristina A. Costa, 2024. "A Methodological Framework for Assessing the Agroecological Performance of Farms in Portugal: Integrating TAPE and ACT Approaches," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    11. Taifeng Yang & Xuetao Huang & Yue Wang & Houjian Li & Lili Guo, 2022. "Dynamic Linkages among Climate Change, Mechanization and Agricultural Carbon Emissions in Rural China," IJERPH, MDPI, vol. 19(21), pages 1-24, November.
    12. Philbert Mperejekumana & Lei Shen & Shuai Zhong & Fabien Muhirwa & Assa Nsabiyeze & Jean Marie Vianney Nsigayehe & Anathalie Nyirarwasa, 2023. "Assessing the Capacity of the Water–Energy–Food Nexus in Enhancing Sustainable Agriculture and Food Security in Burundi," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    13. Patricia Mussali-Galante & María Luisa Castrejón-Godínez & José Antonio Díaz-Soto & Ángela Patricia Vargas-Orozco & Héctor Miguel Quiroz-Medina & Efraín Tovar-Sánchez & Alexis Rodríguez, 2023. "Biobeds, a Microbial-Based Remediation System for the Effective Treatment of Pesticide Residues in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-25, June.
    14. Salvatore Privitera & Emanuele Cerruto & Giuseppe Manetto & Sebastian Lupica & David Nuyttens & Donald Dekeyser & Ingrid Zwertvaegher & Marconi Ribeiro Furtado Júnior & Beatriz Costalonga Vargas, 2024. "Comparison between Liquid Immersion, Laser Diffraction, PDPA, and Shadowgraphy in Assessing Droplet Size from Agricultural Nozzles," Agriculture, MDPI, vol. 14(7), pages 1-20, July.
    15. Huaquan Zhang & Yashuang Tang & Abbas Ali Chandio & Ghulam Raza Sargani & Martinson Ankrah Twumasi, 2022. "Measuring the Effects of Climate Change on Wheat Production: Evidence from Northern China," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    16. Rhonest Siroya Mpoke & Johnson Kinyua & Josephine Wambaire Kimani & Inusa Jacob Ajene & Paddy Likhayo & Fathiya Mbarak Khamis, 2023. "Efficacy of Botanical Extract Formulations of Zanthroxylum usambarense and Warburgia ugandensis on Post-Harvest Management of Sitophilus zeamais in Maize," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    17. Ieva Mežaka & Arta Kronberga & Marta Berga & Laura Kaļāne & Laura Pastare & Gundars Skudriņš & Ilva Nakurte, 2023. "Biochemical and Physiological Responses of Cucumis sativus L. to Application of Potential Bioinsecticides—Aqueous Carum carvi L. Seed Distillation By-Product Based Extracts," Agriculture, MDPI, vol. 13(5), pages 1-17, May.
    18. Roxana Zaharia & Elena Trotuș & Georgeta Trașcă & Emil Georgescu & Agripina Șapcaliu & Viorel Fătu & Cristina Petrișor & Carmen Mincea, 2023. "Impact of Seed Treatment with Imidacloprid, Clothianidin and Thiamethoxam on Soil, Plants, Bees and Hive Products," Agriculture, MDPI, vol. 13(4), pages 1-13, April.
    19. Tadas Jomantas & Kristina Lekavičienė & Dainius Steponavičius & Albinas Andriušis & Ernestas Zaleckas & Remigijus Zinkevičius & Catalin Viorel Popescu & Calin Salceanu & Jonas Ignatavičius & Aurelija , 2023. "The Influence of Newly Developed Spray Drift Reduction Agents on Drift Mitigation by Means of Wind Tunnel and Field Evaluation Methods," Agriculture, MDPI, vol. 13(2), pages 1-26, January.
    20. Zijun Wang & Xin Qin & Hongqiang Dong & You Liang & Zhongyang Huo & Kun Qian & Fengping Yang, 2023. "Applications of Ionic Liquids in the Field of Agriculture: A Review," Agriculture, MDPI, vol. 13(12), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1994-:d:1515438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.