IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1985-d1514573.html
   My bibliography  Save this article

Human-Centered Robotic System for Agricultural Applications: Design, Development, and Field Evaluation

Author

Listed:
  • Jaehwi Seol

    (Department of Convergence Biosystems Engineering, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
    Interdisciplinary Program in ITBio Convergence System, Chonnam National University, Yongbongro 77, Gwangju 61186, Republic of Korea)

  • Yonghyun Park

    (Department of Convergence Biosystems Engineering, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
    Interdisciplinary Program in ITBio Convergence System, Chonnam National University, Yongbongro 77, Gwangju 61186, Republic of Korea)

  • Jeonghyeon Pak

    (Department of Convergence Biosystems Engineering, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
    Interdisciplinary Program in ITBio Convergence System, Chonnam National University, Yongbongro 77, Gwangju 61186, Republic of Korea)

  • Yuseung Jo

    (Department of Convergence Biosystems Engineering, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
    Interdisciplinary Program in ITBio Convergence System, Chonnam National University, Yongbongro 77, Gwangju 61186, Republic of Korea)

  • Giwan Lee

    (Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea)

  • Yeongmin Kim

    (Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea)

  • Chanyoung Ju

    (Automotive Materials & Components R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea)

  • Ayoung Hong

    (Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea)

  • Hyoung Il Son

    (Department of Convergence Biosystems Engineering, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
    Interdisciplinary Program in ITBio Convergence System, Chonnam National University, Yongbongro 77, Gwangju 61186, Republic of Korea
    Research Center for Biological Cybernetics, Chonnam National University, Yongbongro 77, Gwangju 61186, Republic of Korea)

Abstract

This paper introduce advancements in agricultural robotics in response to the increasing demand for automation in agriculture. Our research aims to develop humancentered agricultural robotic systems designed to enhance efficiency, sustainability, and user experience across diverse farming environments. We focus on essential applications where human labor and experience significantly impact performance, addressing four primary robotic systems, i.e., harvesting robots, intelligent spraying robots, autonomous driving robots for greenhouse operations, and multirobot systems, as a method to expand functionality and improve performance. Each system is designed to operate in unstructured agricultural environments, adapting to specific needs. The harvesting robots address the laborintensive demands of crop collection, while intelligent spraying robots improve precision in pesticide application. Autonomous driving robots ensure reliable navigation within controlled environments, and multirobot systems enhance operational efficiency through optimized collaboration. Through these contributions, this study offers insights into the future of agricultural robotics, emphasizing the transformative potential of integrated, experience-driven intelligent solutions that complement and support human labor in digital agriculture.

Suggested Citation

  • Jaehwi Seol & Yonghyun Park & Jeonghyeon Pak & Yuseung Jo & Giwan Lee & Yeongmin Kim & Chanyoung Ju & Ayoung Hong & Hyoung Il Son, 2024. "Human-Centered Robotic System for Agricultural Applications: Design, Development, and Field Evaluation," Agriculture, MDPI, vol. 14(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1985-:d:1514573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinkang Jiao & Ying Zang & Chaowen Chen, 2024. "Key Technologies of Intelligent Weeding for Vegetables: A Review," Agriculture, MDPI, vol. 14(8), pages 1-41, August.
    2. David Reiser & Galibjon M. Sharipov & Gero Hubel & Volker Nannen & Hans W. Griepentrog, 2023. "Development and Experimental Validation of an Agricultural Robotic Platform with High Traction and Low Compaction," Agriculture, MDPI, vol. 13(8), pages 1-15, July.
    3. Ricardo Paul Urvina & César Leonardo Guevara & Juan Pablo Vásconez & Alvaro Javier Prado, 2024. "An Integrated Route and Path Planning Strategy for Skid–Steer Mobile Robots in Assisted Harvesting Tasks with Terrain Traversability Constraints," Agriculture, MDPI, vol. 14(8), pages 1-26, July.
    4. Guangyu Hou & Haihua Chen & Mingkun Jiang & Runxin Niu, 2023. "An Overview of the Application of Machine Vision in Recognition and Localization of Fruit and Vegetable Harvesting Robots," Agriculture, MDPI, vol. 13(9), pages 1-31, September.
    5. Anthony King, 2017. "Technology: The Future of Agriculture," Nature, Nature, vol. 544(7651), pages 21-23, April.
    6. Dongshen Li & Fei Gao & Zemin Li & Yutong Zhang & Chuang Gao & Hongbo Li, 2024. "Design of a Leaf-Bottom Pest Control Robot with Adaptive Chassis and Adjustable Selective Nozzle," Agriculture, MDPI, vol. 14(8), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alison Kennedy & Jessie Adams & Jeremy Dwyer & Muhammad Aziz Rahman & Susan Brumby, 2020. "Suicide in Rural Australia: Are Farming-Related Suicides Different?," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    2. Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    3. Yaoyao Wang & Yuanpei Kuang, 2023. "Evaluation, Regional Disparities and Driving Mechanisms of High-Quality Agricultural Development in China," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    4. Dimitrios Loukatos & Vasileios Arapostathis & Christos-Spyridon Karavas & Konstantinos G. Arvanitis & George Papadakis, 2024. "Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios," Energies, MDPI, vol. 17(5), pages 1-24, March.
    5. Thorsøe, Martin Hvarregaard & Noe, Egon Bjørnshave & Lamandé, Mathieu & Frelih-Larsen, Ana & Kjeldsen, Chris & Zandersen, Marianne & Schjønning, Per, 2019. "Sustainable soil management - Farmers’ perspectives on subsoil compaction and the opportunities and barriers for intervention," Land Use Policy, Elsevier, vol. 86(C), pages 427-437.
    6. Rübcke von Veltheim, Friedrich & Claussen, Frans & Heise, Heinke, 2020. "Autonomous Field Robots in Agriculture: A Qualitative Analysis of User Acceptance According to Different Agricultural Machinery Companies," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305587, German Association of Agricultural Economists (GEWISOLA).
    7. Ilya Kuzminov & Pavel Bakhtin & Elena Khabirova & Maxim Kotsemir & Alina Lavrynenko, 2018. "Mapping the Radical Innovations in Food Industry: A Text Mining Study," HSE Working papers WP BRP 80/STI/2018, National Research University Higher School of Economics.
    8. Eirini Aivazidou & Naoum Tsolakis, 2023. "Transitioning towards human–robot synergy in agriculture: A systems thinking perspective," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(3), pages 536-551, May.
    9. Milyausha Lukyanova & Vitaliy Kovshov & Zariya Zalilova & Vasily Lukyanov & Irek Araslanbaev, 2021. "A systemic comparative economic approach efficiency of fodder production," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-17, December.
    10. Rübcke von Veltheim, Friedrich & Claussen, Frans & Heise, Heinke, 2020. "Autonomous Field Robots in Agriculture: A Qualitative Analysis of User Acceptance According to Different Agricultural Machinery Companies," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305587, German Association of Agricultural Economists (GEWISOLA).
    11. Friedrich Rübcke von Veltheim & Heinke Heise, 2020. "The AgTech Startup Perspective to Farmers Ex Ante Acceptance Process of Autonomous Field Robots," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    12. Dashuai Wang & Sheng Xu & Zhuolin Li & Wujing Cao, 2022. "Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method," Agriculture, MDPI, vol. 12(2), pages 1-14, January.
    13. Nathan J. Shipley & William P. Stewart & Carena J. Riper, 2022. "Negotiating agricultural change in the Midwestern US: seeking compatibility between farmer narratives of efficiency and legacy," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1465-1476, December.
    14. Mingjie Wu & Xuanxi Yang & Lijun Yun & Chenggui Yang & Zaiqing Chen & Yuelong Xia, 2024. "A General Image Super-Resolution Reconstruction Technique for Walnut Object Detection Model," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
    15. Ting Zhang & Qingdong Zeng & Fan Ji & Honghong Wu & Rodrigo Ledesma-Amaro & Qingshan Wei & Hao Yang & Xuhan Xia & Yao Ren & Keqing Mu & Qiang He & Zhensheng Kang & Ruijie Deng, 2023. "Precise in-field molecular diagnostics of crop diseases by smartphone-based mutation-resolved pathogenic RNA analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Muhammad Junaid & Asadullah Shaikh & Mahmood Ul Hassan & Abdullah Alghamdi & Khairan Rajab & Mana Saleh Al Reshan & Monagi Alkinani, 2021. "Smart Agriculture Cloud Using AI Based Techniques," Energies, MDPI, vol. 14(16), pages 1-15, August.
    17. Michels, Marius & von Hobe, Cord-Friedrich & Mußhoff, Oliver, 2020. "Understanding the Adoption of Drones in German Agriculture," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305579, German Association of Agricultural Economists (GEWISOLA).
    18. Kitonsa, H. & Kruglikov, S. V., 2018. "Significance of drone technology for achievement of the United Nations sustainable development goals," R-Economy, Ural Federal University, Graduate School of Economics and Management, vol. 4(3), pages 115-120.
    19. Ciliberti, Stefano & Frascarelli, Angelo & Polenzani, Bianca & Brunori, Gianluca & Martino, Gaetano, 2024. "Digitalisation strategies in the agri-food system: The case of PDO Parmigiano Reggiano," Agricultural Systems, Elsevier, vol. 218(C).
    20. Anja Gaudig & Bernd Ebersberger & Andreas Kuckertz, 2021. "Sustainability-Oriented Macro Trends and Innovation Types—Exploring Different Organization Types Tackling the Global Sustainability Megatrend," Sustainability, MDPI, vol. 13(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1985-:d:1514573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.