IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39952-x.html
   My bibliography  Save this article

Precise in-field molecular diagnostics of crop diseases by smartphone-based mutation-resolved pathogenic RNA analysis

Author

Listed:
  • Ting Zhang

    (Sichuan University)

  • Qingdong Zeng

    (Northwest A&F University)

  • Fan Ji

    (Northwest A&F University)

  • Honghong Wu

    (Huazhong Agricultural University)

  • Rodrigo Ledesma-Amaro

    (Imperial College London)

  • Qingshan Wei

    (North Carolina State University)

  • Hao Yang

    (Sichuan University)

  • Xuhan Xia

    (Sichuan University)

  • Yao Ren

    (Sichuan University)

  • Keqing Mu

    (Northwest A&F University)

  • Qiang He

    (Sichuan University)

  • Zhensheng Kang

    (Northwest A&F University)

  • Ruijie Deng

    (Sichuan University)

Abstract

Molecular diagnostics for crop diseases can guide the precise application of pesticides, thereby reducing pesticide usage while improving crop yield, but tools are lacking. Here, we report an in-field molecular diagnostic tool that uses a cheap colorimetric paper and a smartphone, allowing multiplexed, low-cost, rapid detection of crop pathogens. Rapid nucleic acid amplification-free detection of pathogenic RNA is achieved by combining toehold-mediated strand displacement with a metal ion-mediated urease catalysis reaction. We demonstrate multiplexed detection of six wheat pathogenic fungi and an early detection of wheat stripe rust. When coupled with a microneedle for rapid nucleic acid extraction and a smartphone app for results analysis, the sample-to-result test can be completed in ~10 min in the field. Importantly, by detecting fungal RNA and mutations, the approach allows to distinguish viable and dead pathogens and to sensitively identify mutation-carrying fungicide-resistant isolates, providing fundamental information for precision crop disease management.

Suggested Citation

  • Ting Zhang & Qingdong Zeng & Fan Ji & Honghong Wu & Rodrigo Ledesma-Amaro & Qingshan Wei & Hao Yang & Xuhan Xia & Yao Ren & Keqing Mu & Qiang He & Zhensheng Kang & Ruijie Deng, 2023. "Precise in-field molecular diagnostics of crop diseases by smartphone-based mutation-resolved pathogenic RNA analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39952-x
    DOI: 10.1038/s41467-023-39952-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39952-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39952-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew C. Fisher & Daniel. A. Henk & Cheryl J. Briggs & John S. Brownstein & Lawrence C. Madoff & Sarah L. McCraw & Sarah J. Gurr, 2012. "Emerging fungal threats to animal, plant and ecosystem health," Nature, Nature, vol. 484(7393), pages 186-194, April.
    2. Anthony King, 2017. "Technology: The Future of Agriculture," Nature, Nature, vol. 544(7651), pages 21-23, April.
    3. Xianming Chen, 2020. "Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 239-251, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Ferris & Gary Zabow, 2024. "Quantitative, high-sensitivity measurement of liquid analytes using a smartphone compass," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alison Kennedy & Jessie Adams & Jeremy Dwyer & Muhammad Aziz Rahman & Susan Brumby, 2020. "Suicide in Rural Australia: Are Farming-Related Suicides Different?," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    2. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    4. Yaoyao Wang & Yuanpei Kuang, 2023. "Evaluation, Regional Disparities and Driving Mechanisms of High-Quality Agricultural Development in China," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    5. Dimitrios Loukatos & Vasileios Arapostathis & Christos-Spyridon Karavas & Konstantinos G. Arvanitis & George Papadakis, 2024. "Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios," Energies, MDPI, vol. 17(5), pages 1-24, March.
    6. Thorsøe, Martin Hvarregaard & Noe, Egon Bjørnshave & Lamandé, Mathieu & Frelih-Larsen, Ana & Kjeldsen, Chris & Zandersen, Marianne & Schjønning, Per, 2019. "Sustainable soil management - Farmers’ perspectives on subsoil compaction and the opportunities and barriers for intervention," Land Use Policy, Elsevier, vol. 86(C), pages 427-437.
    7. Rübcke von Veltheim, Friedrich & Claussen, Frans & Heise, Heinke, 2020. "Autonomous Field Robots in Agriculture: A Qualitative Analysis of User Acceptance According to Different Agricultural Machinery Companies," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305587, German Association of Agricultural Economists (GEWISOLA).
    8. P. J. Zarco-Tejada & T. Poblete & C. Camino & V. Gonzalez-Dugo & R. Calderon & A. Hornero & R. Hernandez-Clemente & M. Román-Écija & M. P. Velasco-Amo & B. B. Landa & P. S. A. Beck & M. Saponari & D. , 2021. "Divergent abiotic spectral pathways unravel pathogen stress signals across species," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Ilya Kuzminov & Pavel Bakhtin & Elena Khabirova & Maxim Kotsemir & Alina Lavrynenko, 2018. "Mapping the Radical Innovations in Food Industry: A Text Mining Study," HSE Working papers WP BRP 80/STI/2018, National Research University Higher School of Economics.
    10. Eirini Aivazidou & Naoum Tsolakis, 2023. "Transitioning towards human–robot synergy in agriculture: A systems thinking perspective," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(3), pages 536-551, May.
    11. Milyausha Lukyanova & Vitaliy Kovshov & Zariya Zalilova & Vasily Lukyanov & Irek Araslanbaev, 2021. "A systemic comparative economic approach efficiency of fodder production," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-17, December.
    12. K. Viswanath & P. Sinha & S. Naresh Kumar & Taru Sharma & Shalini Saxena & Shweta Panjwani & H. Pathak & Shalu Mishra Shukla, 2017. "Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario," Climatic Change, Springer, vol. 142(1), pages 155-167, May.
    13. Miles Parker & Andrew Acland & Harry J Armstrong & Jim R Bellingham & Jessica Bland & Helen C Bodmer & Simon Burall & Sarah Castell & Jason Chilvers & David D Cleevely & David Cope & Lucia Costanzo & , 2014. "Identifying the Science and Technology Dimensions of Emerging Public Policy Issues through Horizon Scanning," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-17, May.
    14. J. Junk & L. Kouadio & P. Delfosse & M. Jarroudi, 2016. "Effects of regional climate change on brown rust disease in winter wheat," Climatic Change, Springer, vol. 135(3), pages 439-451, April.
    15. Valentina del Olmo & Verónica Mixão & Rashmi Fotedar & Ester Saus & Amina Al Malki & Ewa Księżopolska & Juan Carlos Nunez-Rodriguez & Teun Boekhout & Toni Gabaldón, 2023. "Origin of fungal hybrids with pathogenic potential from warm seawater environments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Junnan Xiong & Wei Li & Hao Zhang & Weiming Cheng & Chongchong Ye & Yunliang Zhao, 2019. "Selected Environmental Assessment Model and Spatial Analysis Method to Explain Correlations in Environmental and Socio-Economic Data with Possible Application for Explaining the State of the Ecosystem," Sustainability, MDPI, vol. 11(17), pages 1-26, September.
    17. Rübcke von Veltheim, Friedrich & Claussen, Frans & Heise, Heinke, 2020. "Autonomous Field Robots in Agriculture: A Qualitative Analysis of User Acceptance According to Different Agricultural Machinery Companies," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305587, German Association of Agricultural Economists (GEWISOLA).
    18. Moira Kelly & Frank Pasmans & Jose F. Muñoz & Terrance P. Shea & Salvador Carranza & Christina A. Cuomo & An Martel, 2021. "Diversity, multifaceted evolution, and facultative saprotrophism in the European Batrachochytrium salamandrivorans epidemic," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    19. Friedrich Rübcke von Veltheim & Heinke Heise, 2020. "The AgTech Startup Perspective to Farmers Ex Ante Acceptance Process of Autonomous Field Robots," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    20. Dashuai Wang & Sheng Xu & Zhuolin Li & Wujing Cao, 2022. "Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method," Agriculture, MDPI, vol. 12(2), pages 1-14, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39952-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.