IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1861-d1504409.html
   My bibliography  Save this article

Plant Photosynthetic and Respiration Rates Are Key Populational Traits to Improve Yield and Quality for Good-Tasting Double-Cropped Rice

Author

Listed:
  • Shan Huang

    (Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
    These authors contributed equally to this work.)

  • Jiaojiao Wu

    (Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
    These authors contributed equally to this work.)

  • Yongjun Zeng

    (Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China)

  • Guanjun Huang

    (Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China)

Abstract

Improving the yield and quality for tasty rice varieties is a great challenge. In the present study, different nitrogen rates and plant density were utilized to form differential rice populational structures, which were determined to clarify key traits determining grain yield and quality for tasty rice varieties in a double-cropped rice system in subtropical China. The present results showed that the plant photosynthetic rate, leaf area index and plant respiration rate had important and significant impacts on the grain yields of both early and late rice, though the late rice yield was also significantly affected by the canopy temperature. In addition, among the studied populational traits, plant photosynthetic and/or respiration rates had significant effects on all quality traits. Consistently, grain yield and quality were significantly improved with the increasing plant photosynthetic and respiration rates through correlative analysis, which was also observed in principal components analysis. Overall, the present study suggests that both the grain yield and milling and appearance qualities could be improved through the optimal management of nitrogen and plant density through increasing plant photosynthetic and respiration rates.

Suggested Citation

  • Shan Huang & Jiaojiao Wu & Yongjun Zeng & Guanjun Huang, 2024. "Plant Photosynthetic and Respiration Rates Are Key Populational Traits to Improve Yield and Quality for Good-Tasting Double-Cropped Rice," Agriculture, MDPI, vol. 14(11), pages 1-14, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1861-:d:1504409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Can Zhao & Guangming Liu & Yue Chen & Yan Jiang & Yi Shi & Lingtian Zhao & Pingqiang Liao & Weiling Wang & Ke Xu & Qigen Dai & Zhongyang Huo, 2022. "Excessive Nitrogen Application Leads to Lower Rice Yield and Grain Quality by Inhibiting the Grain Filling of Inferior Grains," Agriculture, MDPI, vol. 12(7), pages 1-17, July.
    2. Chen, Le & Deng, Xueyun & Duan, Hongxia & Tan, Xueming & Xie, Xiaobing & Pan, Xiaohua & Guo, Lin & Gao, Hui & Wei, Haiyan & Zhang, Hongcheng & Luo, Tao & Chen, Xinbiao & Zeng, Yongjun, 2023. "Water management can alleviate the deterioration of rice quality caused by high canopy humidity," Agricultural Water Management, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinglong Chen & Yang Liu & Shiqi Dong & Juge Liu & Yang Wang & Shahid Hussain & Huanhe Wei & Zhongyang Huo & Ke Xu & Qigen Dai, 2022. "Response of Rice Yield and Grain Quality to Combined Nitrogen Application Rate and Planting Density in Saline Area," Agriculture, MDPI, vol. 12(11), pages 1-13, October.
    2. Mingqing Liu & Yuncheng Wu & Sijie Huang & Yuwen Yang & Yan Li & Lei Wang & Yunguan Xi & Jibing Zhang & Qiuhui Chen, 2022. "Effects of Organic Fertilization Rates on Surface Water Nitrogen and Phosphorus Concentrations in Paddy Fields," Agriculture, MDPI, vol. 12(9), pages 1-12, September.
    3. Binoy Kumar Show & Suraj Panja & Richik GhoshThakur & Aman Basu & Apurba Koley & Anudeb Ghosh & Kalipada Pramanik & Shibani Chaudhury & Amit Kumar Hazra & Narottam Dey & Andrew B. Ross & Srinivasan Ba, 2023. "Optimisation of Anaerobic Digestate and Chemical Fertiliser Application to Enhance Rice Yield—A Machine-Learning Approach," Sustainability, MDPI, vol. 15(18), pages 1-13, September.
    4. Xiaofei Yang & Kexing Liu & Yanmei Wen & Yongxiang Huang & Chao Zheng, 2023. "Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching," IJERPH, MDPI, vol. 20(5), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1861-:d:1504409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.