IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1542-d1208974.html
   My bibliography  Save this article

The Aversive Response of the Locust Locusta migratoria to 3-Octanone, an Odorant from Fungal Pathogens, Is Mediated by a Chemosensory Protein

Author

Listed:
  • Xiao Xu

    (College of Animal Science and Technology, West Campus, China Agricultural University, Beijing 100094, China)

  • Long Zhang

    (College of Animal Science and Technology, West Campus, China Agricultural University, Beijing 100094, China
    Shandong Provincial Engineering Technology Research Center on Biocontrol for Pests, Jinan 250100, China)

  • Xingbo Zhao

    (College of Animal Science and Technology, West Campus, China Agricultural University, Beijing 100094, China)

Abstract

(1) Locusts are important agricultural pests. Identifying harmful substances and avoiding them is important for locusts’ survival; their abilities to do so remain to be clarified. (2) We examined the electrophysiological (electroantennogram (EAG) and single sensillum recording (SSR)) and behavioral responses (preference behavior in a T-maze) of locusts to 18 different compounds; (3) Of these 18 compounds, 9 elicited strong EAG responses, and 3 elicited SSR responses of neurons expressing locust odorant receptor 3 ( Lmig OR3). The 11 chemicals that elicited stronger EAG or SSR responses were selected for evaluation of the behavioral responses of locusts. Only 2-heptanone induced significant attraction responses in locusts at the tested concentration. RNA interference (RNAi) of Lmig OR3 and SSR experiments revealed that Lmig OR3 could detect 2-heptanone and 3-octanone. However, in behavioral experiments, RNAi of Lmig OR3 did not alter 2-heptanone-induced attraction but increased attraction by 3-octanone. (4) Our results suggest that the broadly tuned receptor expressed in a heterologous expression system exhibits a narrow electrophysiological response spectrum, and the aversive response of locusts to 3-octanone, an odorant from fungal pathogens, natural enemies, and non-host plants, is mediated by Lmig OR3. These findings enhance our understanding of the complex olfactory recognition mechanism in insects.

Suggested Citation

  • Xiao Xu & Long Zhang & Xingbo Zhao, 2023. "The Aversive Response of the Locust Locusta migratoria to 3-Octanone, an Odorant from Fungal Pathogens, Is Mediated by a Chemosensory Protein," Agriculture, MDPI, vol. 13(8), pages 1-13, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1542-:d:1208974
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allison F. Carey & Guirong Wang & Chih-Ying Su & Laurence J. Zwiebel & John R. Carlson, 2010. "Odorant reception in the malaria mosquito Anopheles gambiae," Nature, Nature, vol. 464(7285), pages 66-71, March.
    2. Chih-Ying Su & Karen Menuz & Johannes Reisert & John R. Carlson, 2012. "Non-synaptic inhibition between grouped neurons in an olfactory circuit," Nature, Nature, vol. 492(7427), pages 66-71, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edmund J. Norris & Joel R. Coats, 2017. "Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control," IJERPH, MDPI, vol. 14(2), pages 1-15, January.
    2. Pranjul Singh & Shefali Goyal & Smith Gupta & Sanket Garg & Abhinav Tiwari & Varad Rajput & Alexander Shakeel Bates & Arjit Kant Gupta & Nitin Gupta, 2023. "Combinatorial encoding of odors in the mosquito antennal lobe," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Songling Li & Bingxue Li & Li Gao & Jingwen Wang & Zhiqiang Yan, 2022. "Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1542-:d:1208974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.