IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i6p1234-d1169536.html
   My bibliography  Save this article

High-Efficiency Photovoltaic Equipment for Agriculture Power Supply

Author

Listed:
  • Olga Shepovalova

    (Federal Scientific Agroengineering Center VIM, 1-St Institutskiy Proezd, 5, 109428 Moscow, Russia)

  • Andrey Izmailov

    (Federal Scientific Agroengineering Center VIM, 1-St Institutskiy Proezd, 5, 109428 Moscow, Russia)

  • Yakov Lobachevsky

    (Federal Scientific Agroengineering Center VIM, 1-St Institutskiy Proezd, 5, 109428 Moscow, Russia)

  • Alexey Dorokhov

    (Federal Scientific Agroengineering Center VIM, 1-St Institutskiy Proezd, 5, 109428 Moscow, Russia)

Abstract

Developing an energy supply based on resources whose use does not spoil the noosphere and the creation of such energy supply of efficient equipment whose operation does not cause any damage to nature and man is an urgent task. The need for such an approach is especially relevant and noticeable in agriculture. This article presents the final results of complex studies of new PV devices and PV systems based on them. Considered in the article are the best solutions we propose to improve PV equipment and make it more attractive for agricultural consumers. The developed vertical and planar high-voltage multijunction silicon PV cells and PV modules on their basis are presented. The first type of modules have a maximum power point voltage of up to 1000 V, specific power of up to 0.245 ± 0.01 W/cm 2, and efficiency of up to 25.3% under a concentration ratio range of 10–100 suns. The samples of the second module type (60,156.75 × 156.75 mm PV cells) have an open-circuit voltage of 439.7 V, a short-circuit current of 0.933 A, and a maximum power of 348 W. Additionally, two types of newly designed solar energy concentrators are described in this article: one-dimensional double-wing concentrator ensuring low Fresnel optical losses and multi-zone parabolotoric microconcentrator with the uniform radiation distribution in the focal region, as well as modules based on these concentrators and the developed PV cells. For PV modules, the maximum power degradation is 0.2–0.24% per year in a wet ammonia environment. For concentrating PV modules, this degradation is 0.22–0.37% per year. This article sets out the principles of increasing the efficiency of PV systems by increasing the level of systematization and expanding the boundaries of PV systems. The thus-created PV systems satisfy 30–50% more consumer needs. Thanks to a higher output voltage and other specific features of the developed modules, PV system loss decreased by 12–15%, and maintenance losses also decreased.

Suggested Citation

  • Olga Shepovalova & Andrey Izmailov & Yakov Lobachevsky & Alexey Dorokhov, 2023. "High-Efficiency Photovoltaic Equipment for Agriculture Power Supply," Agriculture, MDPI, vol. 13(6), pages 1-25, June.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1234-:d:1169536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/6/1234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/6/1234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    2. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Elahi, Ehsan & Khalid, Zainab & Zhang, Zhixin, 2022. "Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture," Applied Energy, Elsevier, vol. 309(C).
    4. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    5. Ioan Petri & Sylvain Kubicki & Yacine Rezgui & Annie Guerriero & Haijiang Li, 2017. "Optimizing Energy Efficiency in Operating Built Environment Assets through Building Information Modeling: A Case Study," Energies, MDPI, vol. 10(8), pages 1-17, August.
    6. Iturriaga, E. & Aldasoro, U. & Campos-Celador, A. & Sala, J.M., 2017. "A general model for the optimization of energy supply systems of buildings," Energy, Elsevier, vol. 138(C), pages 954-966.
    7. Ngoc Hai Vu & Thanh Tuan Pham & Seoyong Shin, 2020. "Large Scale Spectral Splitting Concentrator Photovoltaic System Based on Double Flat Waveguides," Energies, MDPI, vol. 13(9), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    2. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    3. Wei Zheng & Hongliang Qiu & Alastair M. Morrison, 2023. "Applying a Combination of SEM and fsQCA to Predict Tourist Resource-Saving Behavioral Intentions in Rural Tourism: An Extension of the Theory of Planned Behavior," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    4. Janina Jędrzejczak-Gas & Joanna Wyrwa & Anetta Barska, 2024. "Sustainable Energy Development and Sustainable Economic Development in EU Countries," Energies, MDPI, vol. 17(7), pages 1-20, April.
    5. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    6. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    7. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    8. Lingjun Wang & Jian Chen, 2024. "Economic and Social Benefits of Aquavoltaics: A Case Study from Jiangsu, China," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    9. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    10. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    11. Daniel Matulić & Željko Andabaka & Sanja Radman & Goran Fruk & Josip Leto & Jakša Rošin & Mirta Rastija & Ivana Varga & Tea Tomljanović & Hrvoje Čeprnja & Marko Karoglan, 2023. "Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia," Agriculture, MDPI, vol. 13(7), pages 1-26, July.
    12. Maier, Rachel & Lütz, Luna & Risch, Stanley & Kullmann, Felix & Weinand, Jann & Stolten, Detlef, 2024. "Potential of floating, parking, and agri photovoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    13. Kim, Sumin & Kim, Sojung, 2023. "Optimization of the design of an agrophotovoltaic system in future climate conditions in South Korea," Renewable Energy, Elsevier, vol. 206(C), pages 928-938.
    14. Jeoung Yul Lee & Ilkhom Okmirzaevich Irisboev & Yeon-Sik Ryu, 2021. "Literature Review on Digitalization in Facilities Management and Facilities Management Performance Measurement: Contribution of Industry 4.0 in the Global Era," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    15. Du Peng & Ehsan Elahi & Zainab Khalid, 2023. "Productive Service Agglomeration, Human Capital Level, and Urban Economic Performance," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    16. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    17. Bingquan Liu & Boyang Nie & Yakun Wang & Xuemin Han & Yongqing Li, 2023. "Does New Infrastructure Affect Regional Carbon Intensity? Empirical Evidence from China," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    18. Elias Carayannis & Pantelis Kostis & Hasan Dinçer & Serhat Yüksel, 2024. "Quality Function Deployment-Oriented Strategic Outlook to Sustainable Energy Policies Based on Quintuple Innovation Helix," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 6761-6779, June.
    19. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    20. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1234-:d:1169536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.