IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p956-d1133391.html
   My bibliography  Save this article

The Impact of Technical Training on Farmers Adopting Water-Saving Irrigation Technology: An Empirical Evidence from China

Author

Listed:
  • Ding Xiuling

    (College of Economics and Management, Northwest A&F University, Yangling, Xianyang 712100, China)

  • Lu Qian

    (College of Economics and Management, Northwest A&F University, Yangling, Xianyang 712100, China)

  • Li Lipeng

    (School of Economics and Management, Ningxia University, Yinchuan 750021, China)

  • Apurbo Sarkar

    (School of Agriculture and Food Science, The University of Queensland, Brisbane 4072, Australia)

Abstract

Farmers’ adoption of water-saving irrigation technology (WSIT) is essential for achieving high-quality agricultural development. An in-depth analysis of the impact of risk aversion, technical training and their interaction on farmers’ adoption of WSIT will help the government to promote WSIT to facilitate agricultural resource conservation and sustainable development. The study takes 707 farmers who grow watermelons and muskmelon in Yuncheng and Xian City of Shanxi and Shaanxi provinces as the research object to analyse the influence of risk aversion and technical training and their interaction terms on farmers’ WSIT adoption behaviour. The study uses the Probit and moderating effect models to outline the findings. The empirical analysis reveals the following outcomes: (i) 27.44% of the sample farmers adopt water-saving irrigation technology, indicating that the current adoption rate and the enthusiasm for adoption are relatively low; (ii) risk aversion has a significant negative impact on farmers’ adoption of WSIT; (iii) both online and offline technical training have a significant positive impact on farmers’ adoption of WSIT; (iv) significant group differences exist in the effects of risk aversion, online technical training, offline technical training and interaction items on farmers’ WSIT adoption behaviour. Therefore, the study proposes to strengthen the role of technical training in the diffusion of WSIT and implement differentiated technical training for different types of farmers to reduce the degree of risk aversion of farmers.

Suggested Citation

  • Ding Xiuling & Lu Qian & Li Lipeng & Apurbo Sarkar, 2023. "The Impact of Technical Training on Farmers Adopting Water-Saving Irrigation Technology: An Empirical Evidence from China," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:956-:d:1133391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min Li & Apurbo Sarkar & Yuge Wang & Ahmed Khairul Hasan & Quanxing Meng, 2022. "Evaluating the Impact of Ecological Property Rights to Trigger Farmers’ Investment Behavior—An Example of Confluence Area of Heihe Reservoir, Shaanxi, China," Land, MDPI, vol. 11(3), pages 1-23, February.
    2. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    3. Weinan Lu & Apurbo Sarkar & Mengyang Hou & Wenxin Liu & Xinyi Guo & Kai Zhao & Minjuan Zhao, 2022. "The Impacts of Urbanization to Improve Agriculture Water Use Efficiency—An Empirical Analysis Based on Spatial Perspective of Panel Data of 30 Provinces of China," Land, MDPI, vol. 11(1), pages 1-20, January.
    4. Lynne, Gary D. & Franklin Casey, C. & Hodges, Alan & Rahmani, Mohammed, 1995. "Conservation technology adoption decisions and the theory of planned behavior," Journal of Economic Psychology, Elsevier, vol. 16(4), pages 581-598, December.
    5. Lei Wang & Yiwen Zhao, 2023. "Will Social Network Relationship Significantly Enhance Farmers’ Participation in the Supply of Small Water-Saving Irrigation and Water Conservancy Facilities in China?," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    6. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    7. Jianjun Tang & Henk Folmer & Jianhong Xue, 2016. "Adoption of farm-based irrigation water-saving techniques in the Guanzhong Plain, China," Agricultural Economics, International Association of Agricultural Economists, vol. 47(4), pages 445-455, July.
    8. Guangming Yang & Guofang Gong & Qingqing Gui, 2022. "Exploring the Spatial Network Structure of Agricultural Water Use Efficiency in China: A Social Network Perspective," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    9. Huong Hoang-Thi & Shah Fahad & Ashfaq Ahmad Shah & Tung Nguyen-Huu-Minh & Tuan Nguyen-Anh & Song Nguyen-Van & Nguyen To-The & Huong Nguyen-Thi-Lan, 2023. "Evaluating the farmers’ adoption behavior of water conservation in mountainous region Vietnam: extrinsic and intrinsic determinants," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1313-1330, January.
    10. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    11. Knox, J.W. & Kay, M.G. & Weatherhead, E.K., 2012. "Water regulation, crop production, and agricultural water management—Understanding farmer perspectives on irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 3-8.
    12. Maria Sabbagh & Luciano Gutierrez, 2022. "Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    13. Mariano, Marc Jim & Villano, Renato & Fleming, Euan, 2012. "Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines," Agricultural Systems, Elsevier, vol. 110(C), pages 41-53.
    14. Darouich, Hanaa & Gonçalves, José M. & Muga, André & Pereira, Luis S., 2012. "Water saving vs. farm economics in cotton surface irrigation: An application of multicriteria analysis," Agricultural Water Management, Elsevier, vol. 115(C), pages 223-231.
    15. Morey Burnham & Zhao Ma & Delan Zhu, 2015. "Erratum to: The human dimensions of water saving irrigation: lessons learned from Chinese smallholder farmers," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 361-362, June.
    16. Lybbert, Travis J. & Sumner, Daniel A., 2012. "Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion," Food Policy, Elsevier, vol. 37(1), pages 114-123.
    17. Zhenci Xu & Xiuzhi Chen & Jianguo Liu & Yu Zhang & Sophia Chau & Nishan Bhattarai & Ye Wang & Yingjie Li & Thomas Connor & Yunkai Li, 2020. "Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    18. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    19. Min Cui & Jizhou Zhang & Xianli Xia, 2022. "The Relationship between Child Rearing Burden and Farmers’ Adoption of Climate Adaptive Technology: Taking Water-Saving Irrigation Technology as an Example," Agriculture, MDPI, vol. 12(6), pages 1-22, June.
    20. Grove, Bennie & Nel, F. & Maluleke, H.H., 2006. "Stochastic efficiency analysis of alternative water conservation strategies," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 45(1), pages 1-10, March.
    21. Adere, Tilahun Habtamu & Mertens, Kewan & Maertens, Miet & Vranken, Liesbet, 2022. "The impact of land certification and risk preferences on investment in soil and water conservation: Evidence from southern Ethiopia," Land Use Policy, Elsevier, vol. 123(C).
    22. Morey Burnham & Zhao Ma & Delan Zhu, 2015. "The human dimensions of water saving irrigation: lessons learned from Chinese smallholder farmers," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 347-360, June.
    23. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    24. Shudong Zhou & Thomas Herzfeld & Thomas Glauben & Yunhua Zhang & Bingchuan Hu, 2008. "Factors Affecting Chinese Farmers' Decisions to Adopt a Water‐Saving Technology," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 56(1), pages 51-61, March.
    25. Giovanni Pino & Pierluigi Toma & Cristian Rizzo & Pier Paolo Miglietta & Alessandro M. Peluso & Gianluigi Guido, 2017. "Determinants of Farmers’ Intention to Adopt Water Saving Measures: Evidence from Italy," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    26. Woldegebrial Zeweld & Guido Van Huylenbroeck & Girmay Tesfay & Stijn Speelman, 2019. "Impacts of socio-psychological factors on smallholder farmers’ risk attitudes: empirical evidence and implications," Agrekon, Taylor & Francis Journals, vol. 58(2), pages 253-279, April.
    27. Bonizella Biagini & Laura Kuhl & Kelly Sims Gallagher & Claudia Ortiz, 2014. "Technology transfer for adaptation," Nature Climate Change, Nature, vol. 4(9), pages 828-834, September.
    28. Biggs, Stephen D., 1990. "A multiple source of innovation model of agricultural research and technology promotion," World Development, Elsevier, vol. 18(11), pages 1481-1499, November.
    29. Anton Eitzinger & Claudia R. Binder & Markus A. Meyer, 2018. "Risk perception and decision-making: do farmers consider risks from climate change?," Climatic Change, Springer, vol. 151(3), pages 507-524, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    2. Caiyan Yang & Weihong Huang & Yu Xiao & Zhenhong Qi & Yan Li & Kun Zhang, 2024. "Adoption of Fertilizer-Reduction and Efficiency-Increasing Technologies in China: The Role of Information Acquisition Ability," Agriculture, MDPI, vol. 14(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalo Villa‐Cox & Francesco Cavazza & Cristian Jordan & Mijail Arias‐Hidalgo & Paúl Herrera & Ramon Espinel & Davide Viaggi & Stijn Speelman, 2021. "Understanding constraints on private irrigation adoption decisions under uncertainty in data constrained settings: A novel empirical approach tested on Ecuadorian Cocoa cultivations," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 985-999, November.
    2. Pronti, Andrea & Auci, Sabrina & Berbel, Julio, 2024. "Water conservation and saving technologies for irrigation. A structured literature review of econometric studies on the determinants of adoption," Agricultural Water Management, Elsevier, vol. 299(C).
    3. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    4. Yongfeng Tan & Apurbo Sarkar & Airin Rahman & Lu Qian & Waqar Hussain Memon & Zharkyn Magzhan, 2021. "Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China," Land, MDPI, vol. 10(8), pages 1-16, August.
    5. Tanko, Mohammed, 2022. "Nexus of risk preference, culture and religion in the adoption of improved rice varieties: Evidence from Northern Ghana," Land Use Policy, Elsevier, vol. 115(C).
    6. Dependra Bhatta & Krishna P. Paudel & Kai Liu, 2023. "Factors influencing water conservation practices adoptions by Nepali farmers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10879-10901, October.
    7. Shuhong Wang & Ning Yin & Zhihai Yang, 2021. "Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10528-10546, July.
    8. Chunxiao Song & Yue Rong & Ruifeng Liu & Les Oxley & Hengyun Ma, 2022. "Testing the Effects of Water-Saving Technologies Adapted to Drought: Empirical Evidence from the Huang-Huai-Hai Region in China," Land, MDPI, vol. 11(12), pages 1-22, November.
    9. Abebe, Gumataw K. & Bijman, Jos & Pascucci, Stefano & Omta, Onno, 2013. "Adoption of improved potato varieties in Ethiopia: The role of agricultural knowledge and innovation system and smallholder farmers’ quality assessment," Agricultural Systems, Elsevier, vol. 122(C), pages 22-32.
    10. Bader Alhafi Alotaibi & Hazem S. Kassem, 2021. "Adoption of Sustainable Water Management Practices among Farmers in Saudi Arabia," Sustainability, MDPI, vol. 13(20), pages 1-17, October.
    11. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Rossi, Fabiana Ribeiro & Filho, Hildo Meirelles de Souza & Miranda, Bruno Varella & Carrer, Marcelo José, 2020. "The role of contracts in the adoption of irrigation by Brazilian orange growers," Agricultural Water Management, Elsevier, vol. 233(C).
    13. Mao, Hui & Chai, Yujia & Shao, Xiaoxuan & Chang, Xue, 2024. "Digital extension and farmers' adoption of climate adaptation technology: An empirical analysis of China," Land Use Policy, Elsevier, vol. 143(C).
    14. Bahta, Y. & Owusu-Sekyeer, E., 2018. "Nexus between homestead food garden programme and land ownership in South Africa: Implication on the income of vegetable farmers," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277732, International Association of Agricultural Economists.
    15. Jincai Zhao & Yiyao Wang & Xiufeng Zhang & Qianxi Liu, 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    16. Caroline Roussy & Aude Ridier & Karim Chaïb, 2014. "Adoption d’innovations par les agriculteurs : rôle des perceptions et des préférences," Post-Print hal-01123427, HAL.
    17. Faruque As Sunny & Linlin Fu & Md Sadique Rahman & Zuhui Huang, 2022. "Determinants and Impact of Solar Irrigation Facility (SIF) Adoption: A Case Study in Northern Bangladesh," Energies, MDPI, vol. 15(7), pages 1-17, March.
    18. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    19. Erwin, Anna & Ma, Zhao & Popovici, Ruxandra & Salas O’Brien, Emma Patricia & Zanotti, Laura & Silva, Chelsea A. & Zeballos, Eliseo Zeballos & Bauchet, Jonathan & Calderón, Nelly Ramírez & Arce Larrea,, 2022. "Linking migration to community resilience in the receiving basin of a large-scale water transfer project," Land Use Policy, Elsevier, vol. 114(C).
    20. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:956-:d:1133391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.