IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p688-d1098463.html
   My bibliography  Save this article

Opportunities and Challenges for Cover Cropping in Sustainable Agriculture Systems in Southern Australia

Author

Listed:
  • Thomas Nordblom

    (Gulbali Institute, Agriculture Water and the Environment, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia)

  • Saliya Gurusinghe

    (Gulbali Institute, Agriculture Water and the Environment, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia)

  • Andrew Erbacher

    (Queensland Department of Agriculture and Fisheries, 26 Lagoon Street, Goondiwindi, QLD 4390, Australia)

  • Leslie A. Weston

    (Gulbali Institute, Agriculture Water and the Environment, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia)

Abstract

Southern Australian farming systems operate predominantly under Mediterranean climatic conditions, which limit the choice of cover crops suitable for enhancement of ground cover and soil moisture retention, erosion control, atmospheric soil nitrogen (N) fixation, and weed suppression between cash crop rotations. Given that the successful establishment of cover crops is climate-driven and also influenced by edaphic factors such as soil pH and salinity, there has been increased interest by southern Australian producers in identifying potential cover crop species well adapted to specific Australian farming systems, which provide vital ecosystem services and sustainable economic benefits through the improvement of soil properties. This review summarises recent findings on cover crop inclusion in diverse farming systems in southern Australia, including continuous and mixed broadacre cropping as well as viticulture and horticulture systems, to identify opportunities and limitations related to their use. Cover crop inclusion in viticulture and pasture systems with lower moisture stress was observed to benefit the subsequent cash crop through enhanced production potential. Long-term, multi-site field experimentation incorporating summer cover crops in winter crop rotations showed that cover crops enhanced ground cover and soil water infiltration in some locations across southern Australia while sometimes increasing winter crop yield, suggesting that soil type and regional climatic conditions greatly influenced the delivery of multiple cover crop benefits. Collectively, these studies have suggested a need for longer-term field evaluations using multiple cover crop species and investigations of termination options under varying environmental and soil conditions to better quantify the legacy effects of cover crops.

Suggested Citation

  • Thomas Nordblom & Saliya Gurusinghe & Andrew Erbacher & Leslie A. Weston, 2023. "Opportunities and Challenges for Cover Cropping in Sustainable Agriculture Systems in Southern Australia," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:688-:d:1098463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tennakoon, S. B. & Milroy, S. P., 2003. "Crop water use and water use efficiency on irrigated cotton farms in Australia," Agricultural Water Management, Elsevier, vol. 61(3), pages 179-194, July.
    2. Meza, Francisco J. & Silva, Daniel & Vigil, Hernan, 2008. "Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative," Agricultural Systems, Elsevier, vol. 98(1), pages 21-30, July.
    3. Luo, Qunying & Behrendt, Karl & Bange, Michael, 2017. "Economics and risk of adaptation options in the Australian cotton industry," Agricultural Systems, Elsevier, vol. 150(C), pages 46-53.
    4. David Pannell & Abbie Rogers, 2022. "Agriculture and the Environment: Policy Approaches in Australia and New Zealand," Review of Environmental Economics and Policy, University of Chicago Press, vol. 16(1), pages 126-145.
    5. Ram N. Acharya & Rajan Ghimire & Apar GC & Don Blayney, 2019. "Effect of Cover Crop on Farm Profitability and Risk in the Southern High Plains," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    3. Hamna Butt & Sadia Sheikh & Hafsah Batool & Muneeb Aamir, 2021. "Yield Verses Sowing Dates," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(4), pages 99-105, December.
    4. Bai, Junfei & Xu, Zhigang & Qiu, Huanguang & Liu, Haiyan, 2015. "Optimising seed portfolios to cope ex ante with risks from bad weather: evidence from a recent maize farmer survey in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    5. Kim, Daeha & Chun, Jong Ahn & Inthavong, Thavone, 2021. "Managing climate risks in a nutrient-deficient paddy rice field using seasonal climate forecasts and AquaCrop," Agricultural Water Management, Elsevier, vol. 256(C).
    6. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    7. Waqas Liaqat & Muhammad Faheem Jan & Haseeb Ahmad & Muhammad Dawood Ahmadzai, 2018. "Genotype and Environment Interaction Determines the Yield Potential of a Crop under Changing Climate," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 9(2), pages 73-75, March.
    8. Buttar, G.S. & Thind, H.S. & Aujla, M.S., 2006. "Methods of planting and irrigation at various levels of nitrogen affect the seed yield and water use efficiency in transplanted oilseed rape (Brassica napus L.)," Agricultural Water Management, Elsevier, vol. 85(3), pages 253-260, October.
    9. Wei Yang & Le Wang, 2023. "Impact of farmer group participation on the adoption of sustainable farming practices—spatial analysis of New Zealand dairy farmers," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 94(3), pages 701-717, September.
    10. Zinnanti, Cinzia & Schimmenti, Emanuele & Borsellino, Valeria & Paolini, Giulio & Severini, Simone, 2019. "Economic performance and risk of farming systems specialized in perennial crops: An analysis of Italian hazelnut production," Agricultural Systems, Elsevier, vol. 176(C).
    11. Islam, Adlul & Ahuja, Lajpat R. & Garcia, Luis A. & Ma, Liwang & Saseendran, Anapalli S. & Trout, Thomas J., 2012. "Modeling the impacts of climate change on irrigated corn production in the Central Great Plains," Agricultural Water Management, Elsevier, vol. 110(C), pages 94-108.
    12. Nassima Amiri & Rachid Lahlali & Said Amiri & Moussa EL Jarroudi & Mohammed Yacoubi Khebiza & Mohammed Messouli, 2021. "Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    13. Waqas Liaqat & Muhammad Faheem Jan & Haseeb Ahmad, 2018. "Sowing Maize on Optimum Time in Season is Unavoidable for Higher Yield," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 8(5), pages 175-176, February.
    14. Louise Beveridge & Stephen Whitfield & Andy Challinor, 2018. "Crop modelling: towards locally relevant and climate-informed adaptation," Climatic Change, Springer, vol. 147(3), pages 475-489, April.
    15. O'Shaughnessy, S.A. & Evett, S.R., 2010. "Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton," Agricultural Water Management, Elsevier, vol. 97(9), pages 1310-1316, September.
    16. Buttar, G.S. & Aujla, M.S. & Thind, H.S. & Singh, C.J. & Saini, K.S., 2007. "Effect of timing of first and last irrigation on the yield and water use efficiency in cotton," Agricultural Water Management, Elsevier, vol. 89(3), pages 236-242, May.
    17. Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
    18. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Daccache, Andre & Mounzer, Oussama & Rouphael, Youssef, 2006. "Water use and lint yield response of drip irrigated cotton to the length of irrigation season," Agricultural Water Management, Elsevier, vol. 85(3), pages 287-295, October.
    19. Suleiman, Ayman A. & Tojo Soler, Cecilia M. & Hoogenboom, Gerrit, 2007. "Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 33-42, July.
    20. Xue, Jingyuan & Na, Qin & Zhang, Xuyang & Grieneisen, Michael L. & Lai, Quan & Zhang, Minghua, 2023. "CalBMP, a web-based modeling tool for evaluating pesticide offsite movement and best management practice scenarios in California agricultural land," Agricultural Water Management, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:688-:d:1098463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.