IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v272y2019i1d10.1007_s10479-017-2569-1.html
   My bibliography  Save this article

The incremental cooperative design of preventive healthcare networks

Author

Listed:
  • Soheil Davari

    (University of Hertfordshire)

Abstract

In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.

Suggested Citation

  • Soheil Davari, 2019. "The incremental cooperative design of preventive healthcare networks," Annals of Operations Research, Springer, vol. 272(1), pages 445-492, January.
  • Handle: RePEc:spr:annopr:v:272:y:2019:i:1:d:10.1007_s10479-017-2569-1
    DOI: 10.1007/s10479-017-2569-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2569-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2569-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    2. Varkevisser, Marco & van der Geest, Stéphanie A. & Schut, Frederik T., 2012. "Do patients choose hospitals with high quality ratings? Empirical evidence from the market for angioplasty in the Netherlands," Journal of Health Economics, Elsevier, vol. 31(2), pages 371-378.
    3. Davari, Soheil & Kilic, Kemal & Naderi, Siamak, 2016. "A heuristic approach to solve the preventive health care problem with budget and congestion constraints," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 442-453.
    4. Rita Santos & Hugh Gravelle & Carol Propper, 2017. "Does Quality Affect Patients’ Choice of Doctor? Evidence from England," Economic Journal, Royal Economic Society, vol. 127(600), pages 445-494, March.
    5. Yue Zhang & Oded Berman & Patrice Marcotte & Vedat Verter, 2010. "A bilevel model for preventive healthcare facility network design with congestion," IISE Transactions, Taylor & Francis Journals, vol. 42(12), pages 865-880.
    6. Dong-Guen Kim & Yeong-Dae Kim, 2013. "A Lagrangian heuristic algorithm for a public healthcare facility location problem," Annals of Operations Research, Springer, vol. 206(1), pages 221-240, July.
    7. Correia, Isabel & Melo, Teresa, 2016. "Multi-period capacitated facility location under delayed demand satisfaction," European Journal of Operational Research, Elsevier, vol. 255(3), pages 729-746.
    8. Elbek, Maria & Wøhlk, Sanne, 2016. "A variable neighborhood search for the multi-period collection of recyclable materials," European Journal of Operational Research, Elsevier, vol. 249(2), pages 540-550.
    9. Zhang, Yue & Berman, Oded & Verter, Vedat, 2009. "Incorporating congestion in preventive healthcare facility network design," European Journal of Operational Research, Elsevier, vol. 198(3), pages 922-935, November.
    10. Beasley, J. E., 1985. "A note on solving large p-median problems," European Journal of Operational Research, Elsevier, vol. 21(2), pages 270-273, August.
    11. Soheil Davari & Kemal Kilic & Gurdal Ertek, 2015. "Fuzzy bi-objective preventive health care network design," Health Care Management Science, Springer, vol. 18(3), pages 303-317, September.
    12. Xue-Feng Wang & Xiao-Ming Sun & Yang Fang, 2008. "Genetic Algorithm Solution For Multi-Period Two-Echelon Integrated Competitive/Uncompetitive Facility Location Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(01), pages 33-56.
    13. Benneyan, James C. & Musdal, Hande & Ceyhan, Mehmet Erkan & Shiner, Brian & Watts, Bradley V., 2012. "Specialty care single and multi-period location–allocation models within the Veterans Health Administration," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 136-148.
    14. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    15. Schmid, Verena & Doerner, Karl F., 2010. "Ambulance location and relocation problems with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1293-1303, December.
    16. Rottkemper, Beate & Fischer, Kathrin & Blecken, Alexander, 2012. "A transshipment model for distribution and inventory relocation under uncertainty in humanitarian operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 98-109.
    17. Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
    18. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    19. Gelareh, Shahin & Neamatian Monemi, Rahimeh & Nickel, Stefan, 2015. "Multi-period hub location problems in transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 67-94.
    20. Albareda-Sambola, Maria & Fernández, Elena & Nickel, Stefan, 2012. "Multiperiod Location-Routing with Decoupled Time Scales," European Journal of Operational Research, Elsevier, vol. 217(2), pages 248-258.
    21. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    22. Robin Haynes & Andrew Lovett & Gisela Sünnenberg, 2003. "Potential Accessibility, Travel Time, and Consumer Choice: Geographical Variations in General Medical Practice Registrations in Eastern England," Environment and Planning A, , vol. 35(10), pages 1733-1750, October.
    23. Fox, J.B. & Shaw, F.E., 2015. "Clinical preventive services coverage and the Affordable Care Act," American Journal of Public Health, American Public Health Association, vol. 105(1), pages 7-10.
    24. Lee, Der-Horng & Dong, Meng, 2009. "Dynamic network design for reverse logistics operations under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 61-71, January.
    25. Vedat Verter & Sophie Lapierre, 2002. "Location of Preventive Health Care Facilities," Annals of Operations Research, Springer, vol. 110(1), pages 123-132, February.
    26. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    27. Marković, Nikola & Ryzhov, Ilya O. & Schonfeld, Paul, 2017. "Evasive flow capture: A multi-period stochastic facility location problem with independent demand," European Journal of Operational Research, Elsevier, vol. 257(2), pages 687-703.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klein, Michael G. & Verter, Vedat & Moses, Brian G., 2020. "Designing a rural network of dialysis facilities," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1088-1100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davari, Soheil & Kilic, Kemal & Naderi, Siamak, 2016. "A heuristic approach to solve the preventive health care problem with budget and congestion constraints," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 442-453.
    2. Kerim Dogan & Mumtaz Karatas & Ertan Yakici, 2020. "A model for locating preventive health care facilities," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1091-1121, September.
    3. Soheil Davari & Kemal Kilic & Gurdal Ertek, 2015. "Fuzzy bi-objective preventive health care network design," Health Care Management Science, Springer, vol. 18(3), pages 303-317, September.
    4. Maryam Radman & Kourosh Eshghi, 2018. "Designing a multi-service healthcare network based on the impact of patients’ flow among medical services," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 637-678, July.
    5. S. Khodaparasti & H. R. Maleki & S. Jahedi & M. E. Bruni & P. Beraldi, 2017. "Enhancing community based health programs in Iran: a multi-objective location-allocation model," Health Care Management Science, Springer, vol. 20(4), pages 485-499, December.
    6. Navneet Vidyarthi & Onur Kuzgunkaya, 2015. "The impact of directed choice on the design of preventive healthcare facility network under congestion," Health Care Management Science, Springer, vol. 18(4), pages 459-474, December.
    7. Esma Akgun & Sibel A. Alumur & F. Safa Erenay, 2023. "Determining optimal COVID-19 testing center locations and capacities," Health Care Management Science, Springer, vol. 26(4), pages 748-769, December.
    8. Mohammadi, M. & Dehbari, S. & Vahdani, Behnam, 2014. "Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 15-41.
    9. Li Wang & Huan Shi & Lu Gan, 2018. "Healthcare Facility Location-Allocation Optimization for China’s Developing Cities Utilizing a Multi-Objective Decision Support Approach," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    10. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    11. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    12. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    13. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    14. Sagarkumar Hirpara & Monit Vaishnav & Pratik J. Parikh & Nan Kong & Priti Parikh, 2022. "Locating trauma centers considering patient safety," Health Care Management Science, Springer, vol. 25(2), pages 291-310, June.
    15. Robert Aboolian & Oded Berman & Dmitry Krass, 2012. "Profit Maximizing Distributed Service System Design with Congestion and Elastic Demand," Transportation Science, INFORMS, vol. 46(2), pages 247-261, May.
    16. Zhang, Yue & Liang, Liping & Liu, Emma & Chen, Chong & Atkins, Derek, 2016. "Patient choice analysis and demand prediction for a health care diagnostics company," European Journal of Operational Research, Elsevier, vol. 251(1), pages 198-205.
    17. TALARICO, Luca & MEISEL, Frank & SÖRENSEN, Kenneth, 2014. "Ambulance routing for disaster response with patient groups," Working Papers 2014005, University of Antwerp, Faculty of Business and Economics.
    18. Ralf Krohn & Sven Müller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 59-87, March.
    19. Dong-Guen Kim & Yeong-Dae Kim, 2013. "A Lagrangian heuristic algorithm for a public healthcare facility location problem," Annals of Operations Research, Springer, vol. 206(1), pages 221-240, July.
    20. Mousazadeh, M. & Torabi, S. Ali & Pishvaee, M.S. & Abolhassani, F., 2018. "Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 113-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:272:y:2019:i:1:d:10.1007_s10479-017-2569-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.