IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p337-d1051362.html
   My bibliography  Save this article

Salinity Threshold of Tall Wheatgrass for Cultivation in Coastal Saline and Alkaline Land

Author

Listed:
  • Hongwei Li

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China)

  • Wei Li

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    College of Agriculture, Yangtze University, Jingzhou 434023, China)

  • Qi Zheng

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China)

  • Maolin Zhao

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    Zhongke-Dongying Research Center of Molecular Designed Breeding, Dongying 257509, China
    Agricultural Experiment Station for Saline-Alkaline Land in Yellow River Delta Region, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Dongying 257509, China)

  • Jianlin Wang

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    Zhongke-Dongying Research Center of Molecular Designed Breeding, Dongying 257509, China
    Agricultural Experiment Station for Saline-Alkaline Land in Yellow River Delta Region, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Dongying 257509, China)

  • Bin Li

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China)

  • Zhensheng Li

    (State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Tall wheatgrass ( Elytrigia elongata ) has the potential to be utilized on marginal land, such as coastal saline-alkaline soils, to meet rising ruminant feed demand. However, the salinity threshold for cultivation of tall wheatgrass remains unclear, which restricts its extensive application. Here, a tall wheatgrass line, Zhongyan 1, was grown in saline-alkaline soils in the Yellow River Delta region to determine its salinity threshold. The results showed that the soil salinity of AM = 1.23, measured with a PNT3000 activity meter, led to only 5% dead plants of tall wheatgrass. Four grades of seedling plants were classified according to the morphological response of Zhongyan 1 to saline soils. The soil salinity declined while the survival rate and forage yield increased from grade 1 to grade 4 plants. Plant height and dry matter yield were negatively related to soil salinity. When the salinity in the soil depth of 0–10 cm was over 1%, the survival rate of tall wheatgrass declined dramatically with the increase in soil salinity. Under saline-alkaline stress, the plant height during 12–31 May was positively related to forage yield, which can be used as an indicator of productivity. The tall type (70–120 cm) produced 5627.2 kg ha −1 of dry matter, which was 3.32 times that of the dwarf type (20–69 cm). The forage yield of tall wheatgrass in saline-alkaline land was largely affected by the proportion of highly saline soil. Collectively, the soil salinity of 1% at a depth of 0–10 cm and the AM values of 1.23 measured with a PNT3000 activity meter can be used as the salinity threshold for cultivation of tall wheatgrass in coastal saline-alkaline land.

Suggested Citation

  • Hongwei Li & Wei Li & Qi Zheng & Maolin Zhao & Jianlin Wang & Bin Li & Zhensheng Li, 2023. "Salinity Threshold of Tall Wheatgrass for Cultivation in Coastal Saline and Alkaline Land," Agriculture, MDPI, vol. 13(2), pages 1-12, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:337-:d:1051362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suyama, H. & Benes, S.E. & Robinson, P.H. & Grattan, S.R. & Grieve, C.M. & Getachew, G., 2007. "Forage yield and quality under irrigation with saline-sodic drainage water: Greenhouse evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 159-172, March.
    2. Carlos S. Ciria & Carlos M. Sastre & Juan Carrasco & Pilar Ciria, 2020. "Tall wheatgrass (Thinopyrum ponticum (Podp)) in a real farm context, a sustainable perennial alternative to rye (Secale cereale L.) cultivation in marginal lands," Papers 2003.13395, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Li & Junliang Yin & Dongfang Ma & Qi Zheng & Hongwei Li & Jianlin Wang & Maolin Zhao & Xiaojing Liu & Zhensheng Li, 2023. "Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass in Edaphoclimatic Scenarios of the Coastal Saline–Alkaline Land around Bohai Sea," Agriculture, MDPI, vol. 13(11), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Li & Junliang Yin & Dongfang Ma & Qi Zheng & Hongwei Li & Jianlin Wang & Maolin Zhao & Xiaojing Liu & Zhensheng Li, 2023. "Acceptable Salinity Level for Saline Water Irrigation of Tall Wheatgrass in Edaphoclimatic Scenarios of the Coastal Saline–Alkaline Land around Bohai Sea," Agriculture, MDPI, vol. 13(11), pages 1-19, November.
    2. J. Jed Brown & Probir Das & Mohammad Al-Saidi, 2018. "Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    3. Johnston, Christopher R. & Vance, George F. & Ganjegunte, Girisha K., 2008. "Irrigation with coalbed natural gas co-produced water," Agricultural Water Management, Elsevier, vol. 95(11), pages 1243-1252, November.
    4. Benes, S.E. & Adhikari, D.D. & Grattan, S.R. & Snyder, R.L., 2012. "Evapotranspiration potential of forages irrigated with saline-sodic drainage water," Agricultural Water Management, Elsevier, vol. 105(C), pages 1-7.
    5. Shital Poudyal & Valtcho D. Zheljazkov, 2021. "Irrigation with Coalbed Methane Co-Produced Water Reduces Forage Yield and Increases Soil Sodicity However Does Not Impact Forage Quality," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    6. Jorge F. S. Ferreira & Monica V. Cornacchione & Xuan Liu & Donald L. Suarez, 2015. "Nutrient Composition, Forage Parameters, and Antioxidant Capacity of Alfalfa ( Medicago sativa , L.) in Response to Saline Irrigation Water," Agriculture, MDPI, vol. 5(3), pages 1-21, July.
    7. Díaz, F.J. & Grattan, S.R. & Reyes, J.A. & de la Roza-Delgado, B. & Benes, S.E. & Jiménez, C. & Dorta, M. & Tejedor, M., 2018. "Using saline soil and marginal quality water to produce alfalfa in arid climates," Agricultural Water Management, Elsevier, vol. 199(C), pages 11-21.
    8. Amninder Singh & Nigel W. T. Quinn & Sharon E. Benes & Florence Cassel, 2020. "Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    9. Hu, Yanzhe & Kang, Shaozhong & Ding, Risheng & Zhao, Qing, 2021. "A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Díaz, F.J. & Benes, S.E. & Grattan, S.R., 2013. "Field performance of halophytic species under irrigation with saline drainage water in the San Joaquin Valley of California," Agricultural Water Management, Elsevier, vol. 118(C), pages 59-69.
    11. Máximo F. Alonso & Dennis L. Corwin & James D. Oster & John Maas & Stephen R. Kaffka, 2013. "Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 5(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:337-:d:1051362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.