IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i1p197-d1034274.html
   My bibliography  Save this article

Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review

Author

Listed:
  • Cristina Abbate

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Aurelio Scavo

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Gaetano Roberto Pesce

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Stefania Fontanazza

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Alessia Restuccia

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

  • Giovanni Mauromicale

    (Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy)

Abstract

The use of plastic mulch films is widespread in agriculture for specialty cropping systems because of several benefits. In this article, we critically review, for the first time under a holistic approach, the use of biodegradable plastic mulches (BdPMs) in soil as a sustainable alternative to conventional petroleum-based plastics, highlighting the current state of understanding of their degradation in soil and their effect on soil microorganisms, weed control, and soil properties. In addition, we provide a detailed focus on the history and economic importance of mulching. BdPMs are effective for use in vegetable production in that they improve physical, chemical, and biological soil properties, as well as enhancing microbial biodiversity, controlling weeds, and maintaining soil moisture. BdPMs could be useful to limit the use of agrochemicals and reduce tillage and irrigation supplies for sustainable management.

Suggested Citation

  • Cristina Abbate & Aurelio Scavo & Gaetano Roberto Pesce & Stefania Fontanazza & Alessia Restuccia & Giovanni Mauromicale, 2023. "Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review," Agriculture, MDPI, vol. 13(1), pages 1-30, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:197-:d:1034274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hong & Wang, Chenbing & Zhao, Xiumei & Wang, Falin, 2015. "Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 154(C), pages 20-28.
    2. Fernandez, J. E. & Moreno, F. & Murillo, J. M. & Cuevas, M. V. & Kohler, F., 2001. "Evaluating the effectiveness of a hydrophobic polymer for conserving water and reducing weed infection in a sandy loam soil," Agricultural Water Management, Elsevier, vol. 51(1), pages 29-51, October.
    3. Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
    4. Adhikari, Raju & Bristow, Keith L. & Casey, Philip S. & Freischmidt, George & Hornbuckle, John W. & Adhikari, Benu, 2016. "Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency," Agricultural Water Management, Elsevier, vol. 169(C), pages 1-13.
    5. Jensen, M.H. & Malter, A.J., 1995. "Protected Agriculture: A Global Review," Papers 253, World Bank - Technical Papers.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge Mongil-Manso & Raimundo Jiménez-Ballesta & Juan Manuel Trujillo-González & Ana San José Wery & Alexandra Díez Méndez, 2023. "A Comprehensive Review of Plastics in Agricultural Soils: A Case Study of Castilla y León (Spain) Farmlands," Land, MDPI, vol. 12(10), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zong, Rui & Wang, Zhenhua & Zhang, Jinzhu & Li, Wenhao, 2021. "The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China," Agricultural Water Management, Elsevier, vol. 249(C).
    2. Braunack, Michael V. & Filipović, Vilim & Adhikari, Raju & Freischmidt, George & Johnston, Priscilla & Casey, Phil S. & Wang, Yusong & Šimůnek, Jiří & Filipović, Lana & Bristow, Keith L., 2021. "Evaluation of a Sprayable Biodegradable Polymer Membrane (SBPM) Technology for soil water conservation in tomato and watermelon production systems," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Farfan, Javier & Lohrmann, Alena & Breyer, Christian, 2019. "Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 368-377.
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    7. Zhang, Peng & Wei, Ting & Han, Qingfang & Ren, Xiaolong & Jia, Zhikuan, 2020. "Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Chang, Jie & Wu, Xu & Liu, Anqin & Wang, Yan & Xu, Bin & Yang, Wu & Meyerson, Laura A. & Gu, Baojing & Peng, Changhui & Ge, Ying, 2011. "Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China," Ecological Economics, Elsevier, vol. 70(4), pages 740-748, February.
    10. Braunack, Michael V. & Zaja, Adriana & Tam, Kang & Filipović, Lana & Filipović, Vilim & Wang, Yusong & Bristow, Keith L., 2020. "A Sprayable Biodegradable Polymer Membrane (SBPM) technology: Effect of band width and application rate on water conservation and seedling emergence," Agricultural Water Management, Elsevier, vol. 230(C).
    11. Xiangxiang Wang & Zhilong Cheng & Xin Cheng & Quanjiu Wang, 2022. "Effects of Surface Mulching on the Growth and Water Consumption of Maize," Agriculture, MDPI, vol. 12(11), pages 1-12, November.
    12. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Honglei Ren & Shengjun Xu & Fengyi Zhang & Mingming Sun & Ruiping Zhang, 2023. "Cultivation and Nitrogen Management Practices Effect on Soil Carbon Fractions, Greenhouse Gas Emissions, and Maize Production under Dry-Land Farming System," Land, MDPI, vol. 12(7), pages 1-16, June.
    14. Yin, Minhua & Li, Yuannong & Fang, Heng & Chen, Pengpeng, 2019. "Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth," Agricultural Water Management, Elsevier, vol. 216(C), pages 127-137.
    15. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Xia Gao & Chenxing Fu & Mingxiao Li & Xuejiao Qi & Xuan Jia, 2022. "Effects of Biodegradation of Corn-Starch–Sodium-Alginate-Based Liquid Mulch Film on Soil Microbial Functions," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    18. Ding, Wenbin & Wang, Fei & Dong, Yunyun & Jin, Kai & Cong, Chenyu & Han, Jianqiao & Ge, Wenyan, 2021. "Effects of rainwater harvesting system on soil moisture in rain-fed orchards on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Li, Yupeng & Chen, Pengpeng, 2021. "Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China?," Agricultural Water Management, Elsevier, vol. 246(C).
    20. Pan, Daili & Song, Yaqian & Dyck, Miles & Gao, Xiaodong & Wu, Pute & Zhao, Xining, 2017. "Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 135-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:197-:d:1034274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.