IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p2062-d1521906.html
   My bibliography  Save this article

Understanding the Impact of Soil Characteristics and Field Management Strategies on the Degradation of a Sprayable, Biodegradable Polymeric Mulch

Author

Listed:
  • Cuyler K. Borrowman

    (School of Chemistry, Monash University, Clayton, VIC 3800, Australia)

  • Raju Adhikari

    (CSIRO Manufacturing, Clayton, VIC 3168, Australia)

  • Kei Saito

    (School of Chemistry, Monash University, Clayton, VIC 3800, Australia)

  • Stuart Gordon

    (CSIRO Agriculture and Food Research Unit, Werribee, VIC 3030, Australia)

  • Antonio F. Patti

    (School of Chemistry, Monash University, Clayton, VIC 3800, Australia)

Abstract

The use of non-degradable plastic mulch has become an essential agricultural practice for increasing crop yields, but continued use has led to contamination problems and in some cropping areas decreases in agricultural productivity. The subsequent emergence of biodegradable plastic mulches is a technological solution to these issues, so it is important to understand how different soil characteristics and field management strategies will affect the rate at which these new materials degrade in nature. In this work, a series of lab-scale hydrolytic degradation experiments were conducted to determine how different soil characteristics (type, pH, microbial community composition, and particle size) affected the degradation rate of a sprayable polyester–urethane–urea (PEUU) developed as a biodegradable mulch. The laboratory experiments were coupled with long-term, outdoor, soil degradation studies, carried out in Clayton, Victoria, to build a picture of important factors that can control the rate of PEUU degradation. It was found that temperature and acidity were the most important factors, with increasing temperature and decreasing pH leading to faster degradation. Other important factors affecting the rate of degradation were the composition of the soil microbial community, the mass loading of PEUU on soil, and the degree to which the PEUU was in contact with the soil.

Suggested Citation

  • Cuyler K. Borrowman & Raju Adhikari & Kei Saito & Stuart Gordon & Antonio F. Patti, 2024. "Understanding the Impact of Soil Characteristics and Field Management Strategies on the Degradation of a Sprayable, Biodegradable Polymeric Mulch," Agriculture, MDPI, vol. 14(11), pages 1-14, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2062-:d:1521906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/2062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/2062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Dedi & Chen, Lei & Qu, Hongchao & Wang, Yilin & Misselbrook, Tom & Jiang, Rui, 2018. "Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 202(C), pages 166-173.
    2. Fernandez, J. E. & Moreno, F. & Murillo, J. M. & Cuevas, M. V. & Kohler, F., 2001. "Evaluating the effectiveness of a hydrophobic polymer for conserving water and reducing weed infection in a sandy loam soil," Agricultural Water Management, Elsevier, vol. 51(1), pages 29-51, October.
    3. Adhikari, Raju & Bristow, Keith L. & Casey, Philip S. & Freischmidt, George & Hornbuckle, John W. & Adhikari, Benu, 2016. "Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency," Agricultural Water Management, Elsevier, vol. 169(C), pages 1-13.
    4. Ejaz Qureshi, M. & Hanjra, Munir A. & Ward, John, 2013. "Impact of water scarcity in Australia on global food security in an era of climate change," Food Policy, Elsevier, vol. 38(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas G. Hayes, 2025. "Impact of Plastics in Agriculture," Agriculture, MDPI, vol. 15(3), pages 1-2, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zong, Rui & Wang, Zhenhua & Zhang, Jinzhu & Li, Wenhao, 2021. "The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China," Agricultural Water Management, Elsevier, vol. 249(C).
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Cristina Abbate & Aurelio Scavo & Gaetano Roberto Pesce & Stefania Fontanazza & Alessia Restuccia & Giovanni Mauromicale, 2023. "Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review," Agriculture, MDPI, vol. 13(1), pages 1-30, January.
    4. Tianshu Shao & Xiangdong Xu & Yuelong Su, 2025. "Evaluation and Prediction of Agricultural Water Use Efficiency in the Jianghan Plain Based on the Tent-SSA-BPNN Model," Agriculture, MDPI, vol. 15(2), pages 1-32, January.
    5. Ren, Xiaohang & An, Yaning & Jin, Chenglu & Yan, Cheng, 2024. "Weathering the policy storm: How climate strategy volatility shapes corporate total factor productivity," Energy Economics, Elsevier, vol. 134(C).
    6. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Dawood MAMOON & Kinza IJAZ, 2017. "How climate and agriculture fares with food security in Pakistan?," Journal of Economics Bibliography, KSP Journals, vol. 4(4), pages 307-327, December.
    8. Fu, Wei & Fan, Jun & Hao, Mingde & Hu, Jinsheng & Wang, Huan, 2021. "Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    10. Yogi Vidyattama & Leonie J. Pearson & Robert Tanton & Itismita Mohanty, 2017. "Assessing adaptive capacity during the drought period in the Murray–Darling Basin," Asia-Pacific Journal of Regional Science, Springer, vol. 1(1), pages 155-170, April.
    11. Chaobiao Meng & Jianyu Zhao & Ning Wang & Kaijing Yang & Fengxin Wang, 2022. "Black Plastic Film Mulching Increases Soil Nitrous Oxide Emissions in Arid Potato Fields," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    12. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    13. Sudheer Padikkal & K. S. Sumam & N. Sajikumar, 2018. "Sustainability indicators of water sharing compacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2027-2042, October.
    14. Xia Gao & Chenxing Fu & Mingxiao Li & Xuejiao Qi & Xuan Jia, 2022. "Effects of Biodegradation of Corn-Starch–Sodium-Alginate-Based Liquid Mulch Film on Soil Microbial Functions," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    15. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    16. Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Dario Aversa & Nino Adamashvili & Mariantonietta Fiore & Alessia Spada, 2022. "Scoping Review (SR) via Text Data Mining on Water Scarcity and Climate Change," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    18. Chen, Die & Wei, Wei & Chen, Liding, 2020. "How can terracing impact on soil moisture variation in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 227(C).
    19. Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    20. Simin Mehdipour & Nouzar Nakhaee & Farzaneh Zolala & Maryam Okhovati & Afsar Foroud & Ali Akbar Haghdoost, 2022. "A systematized review exploring the map of publications on the health impacts of drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 35-62, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:2062-:d:1521906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.