IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i3d10.1038_s41558-020-00972-w.html
   My bibliography  Save this article

Global terrestrial water storage and drought severity under climate change

Author

Listed:
  • Yadu Pokhrel

    (Michigan State University)

  • Farshid Felfelani

    (Michigan State University)

  • Yusuke Satoh

    (National Institute for Environmental Studies
    International Institute for Applied Systems Analysis)

  • Julien Boulange

    (National Institute for Environmental Studies)

  • Peter Burek

    (International Institute for Applied Systems Analysis)

  • Anne Gädeke

    (Potsdam Institute for Climate Impact Research (PIK))

  • Dieter Gerten

    (Potsdam Institute for Climate Impact Research (PIK)
    Geography Department, Humboldt-Universität zu Berlin)

  • Simon N. Gosling

    (University of Nottingham)

  • Manolis Grillakis

    (Technical University of Crete)

  • Lukas Gudmundsson

    (Institute for Atmospheric and Climate Science, ETH Zurich)

  • Naota Hanasaki

    (National Institute for Environmental Studies)

  • Hyungjun Kim

    (The University of Tokyo)

  • Aristeidis Koutroulis

    (Technical University of Crete)

  • Junguo Liu

    (Southern University of Science and Technology)

  • Lamprini Papadimitriou

    (Cranfield University)

  • Jacob Schewe

    (Potsdam Institute for Climate Impact Research (PIK))

  • Hannes Müller Schmied

    (Goethe-University Frankfurt
    Senckenberg Leibniz Biodiversity and Climate Research Centre Frankfurt (SBiK-F))

  • Tobias Stacke

    (Institute of Coastal Research, Helmholtz-Zentrum Geesthacht (HZG))

  • Camelia-Eliza Telteu

    (Goethe-University Frankfurt)

  • Wim Thiery

    (Institute for Atmospheric and Climate Science, ETH Zurich
    Vrije Universiteit Brussel)

  • Ted Veldkamp

    (International Institute for Applied Systems Analysis
    VU University
    Utrecht University)

  • Fang Zhao

    (East China Normal University)

  • Yoshihide Wada

    (International Institute for Applied Systems Analysis
    Utrecht University)

Abstract

Terrestrial water storage (TWS) modulates the hydrological cycle and is a key determinant of water availability and an indicator of drought. While historical TWS variations have been increasingly studied, future changes in TWS and the linkages to droughts remain unexamined. Here, using ensemble hydrological simulations, we show that climate change could reduce TWS in many regions, especially those in the Southern Hemisphere. Strong inter-ensemble agreement indicates high confidence in the projected changes that are driven primarily by climate forcing rather than land and water management activities. Declines in TWS translate to increases in future droughts. By the late twenty-first century, the global land area and population in extreme-to-exceptional TWS drought could more than double, each increasing from 3% during 1976–2005 to 7% and 8%, respectively. Our findings highlight the importance of climate change mitigation to avoid adverse TWS impacts and increased droughts, and the need for improved water resource management and adaptation.

Suggested Citation

  • Yadu Pokhrel & Farshid Felfelani & Yusuke Satoh & Julien Boulange & Peter Burek & Anne Gädeke & Dieter Gerten & Simon N. Gosling & Manolis Grillakis & Lukas Gudmundsson & Naota Hanasaki & Hyungjun Kim, 2021. "Global terrestrial water storage and drought severity under climate change," Nature Climate Change, Nature, vol. 11(3), pages 226-233, March.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-020-00972-w
    DOI: 10.1038/s41558-020-00972-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-00972-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-00972-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monna Lysa Teixeira Santana & Vanêssa Lopes de Faria & Samara Martins Barbosa & Milson Evaldo Serafim & Alexandre Uezu & Bruno Montoani Silva & Junior Cesar Avanzi, 2023. "Impacts of Land Use Changes on Soil Functions and Water Security: Insights from a Three-Year-Long Study in the Cantareira System, Southeast of Brazil," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    2. Haimei Duan & Chunxue Shang & Kun Yang & Yi Luo, 2022. "Dynamic Response of Surface Water Temperature in Urban Lakes under Different Climate Scenarios—A Case Study in Dianchi Lake, China," IJERPH, MDPI, vol. 19(19), pages 1-11, September.
    3. Yiping Wu & Xiaowei Yin & Guoyi Zhou & L. Adrian Bruijnzeel & Aiguo Dai & Fan Wang & Pierre Gentine & Guangchuang Zhang & Yanni Song & Decheng Zhou, 2024. "Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Marzia Ciampittiello & Aldo Marchetto & Angela Boggero, 2024. "Water Resources Management under Climate Change: A Review," Sustainability, MDPI, vol. 16(9), pages 1-14, April.
    6. Wang, Li & Liu, Xiaoli & Liu, Xuejing & Bao, Xiaoyuan & Zhang, Xuecheng & Yin, Baozhong & Wang, Wentao & Wang, Yandong & Zhen, Wenchao, 2024. "Effects of spring limited irrigation on grain yield and root characteristics of winter wheat in groundwater-overexploitation areas in the North China Plain," Agricultural Water Management, Elsevier, vol. 294(C).
    7. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    9. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    10. Fazlullah Akhtar & Usman Khalid Awan & Christian Borgemeister & Bernhard Tischbein, 2021. "Coupling Remote Sensing and Hydrological Model for Evaluating the Impacts of Climate Change on Streamflow in Data-Scarce Environment," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    11. Peyman Arjomandi A. & Masoud Yazdanpanah & Akbar Shirzad & Nadejda Komendantova & Erfan Kameli & Mahdi Hosseinzadeh & Erfan Razavi, 2023. "Institutional Trust and Cognitive Motivation toward Water Conservation in the Face of an Environmental Disaster," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    12. Junguo Liu & Delong Li & He Chen & Hong Wang & Yoshihide Wada & Matti Kummu & Simon Newland Gosling & Hong Yang & Yadu Pokhrel & Philippe Ciais, 2024. "Timing the first emergence and disappearance of global water scarcity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. de Castro-Pardo, Mónica & Cabello, José Manuel & Martín, José María & Ruiz, Francisco, 2023. "A multi reference point based index to assess and monitor European water policies from a sustainability approach," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    15. Lenise Santos & Isabel Brás & Miguel Ferreira & Idalina Domingos & José Ferreira, 2024. "Life Cycle Assessment of Green Space Irrigation Using Treated Wastewater: A Case Study," Sustainability, MDPI, vol. 16(13), pages 1-15, July.
    16. Akhtar, F. & Awan, Usman Khalid & Borgemeister, C. & Tischbein, B., 2021. "Coupling remote sensing and hydrological model for evaluating the impacts of climate change on streamflow in data-scarce environment," Papers published in Journals (Open Access), International Water Management Institute, pages 1-13(24):14.
    17. David N. Sattler & James M. Graham & Albert Whippy & Richard Atienza & James Johnson, 2023. "Developing a Climate Change Risk Perception Model in the Philippines and Fiji: Posttraumatic Growth Plays Central Role," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    18. Eleonora Cataldo & Maddalena Fucile & Giovan Battista Mattii, 2022. "Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines," Agriculture, MDPI, vol. 12(4), pages 1-21, March.
    19. Cailin Wang & Enliang Guo & Yongfang Wang & Buren Jirigala & Yao Kang & Ye Zhang, 2023. "Spatiotemporal variations in drought and waterlogging and their effects on maize yields at different growth stages in Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 155-180, August.
    20. Amjad Khan & Yoonkyung Park & Jongpyo Park & Reeho Kim, 2022. "Assessment of Rainwater Harvesting Facilities Tank Size Based on a Daily Water Balance Model: The Case of Korea," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    21. Yongbin Zhang & Tanglei Song & Jihao Fan & Weidong Man & Mingyue Liu & Yongqiang Zhao & Hao Zheng & Yahui Liu & Chunyu Li & Jingru Song & Xiaowu Yang & Junmin Du, 2022. "Land Use and Climate Change Altered the Ecological Quality in the Luanhe River Basin," IJERPH, MDPI, vol. 19(13), pages 1-22, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-020-00972-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.