IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p329-d757734.html
   My bibliography  Save this article

Data Management and Integration of Low Power Consumption Embedded Devices IoT for Transforming Smart Agriculture into Actionable Knowledge

Author

Listed:
  • El Mehdi Ouafiq

    (Hassania School of Public Works, Km 7 Rte d’El Jadida, Casablanca BP 8108, Morocco)

  • Rachid Saadane

    (Hassania School of Public Works, Km 7 Rte d’El Jadida, Casablanca BP 8108, Morocco)

  • Abdellah Chehri

    (Department of Applied Sciences, University of Quebec in Chicoutimi, 555 Bd de l’Université, Chicoutimi, QC G7H 2B1, Canada)

Abstract

Smart agriculture today uses a wide range of wireless communication technologies. Low Power Consumption Embedded Devices (LPCED), such as the Internet of Things (IoT) and Wireless Sensor Networks, make it possible to work over great distances at a reduced cost but with limited transferable data volumes. However, data management (DM) in intelligent agriculture is still not well understood due to the fact that there are not enough scientific publications available on this. Though data management (DM) benefits are factual and substantial, many challenges must be addressed in order to fully realize the DM’s potential. The main difficulties are data integration complexities, the lack of skilled personnel and sufficient resources, inadequate infrastructure, and insignificant data warehouse architecture. This work proposes a comprehensive architecture that includes big data technologies, IoT components, and knowledge-based systems. We proposed an AI-based architecture for smart farming. This architecture called, Smart Farming Oriented Big-Data Architecture (SFOBA), is designed to guarantee the system’s durability and the data modeling in order to transform the business needs for smart farming into analytics. Furthermore, the proposed solution is built on a pre-defined big data architecture that includes an abstraction layer of the data lake that handles data quality, following a data migration strategy in order to ensure the data’s insights.

Suggested Citation

  • El Mehdi Ouafiq & Rachid Saadane & Abdellah Chehri, 2022. "Data Management and Integration of Low Power Consumption Embedded Devices IoT for Transforming Smart Agriculture into Actionable Knowledge," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:329-:d:757734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo A. Haddad & Fatima Ezzahra Mengoub & Vinicius A. Vale, 2020. "Water content in trade: a regional analysis for Morocco," Economic Systems Research, Taylor & Francis Journals, vol. 32(4), pages 565-584, October.
    2. Faye Duchin & Carlos López-Morales, 2012. "Do Water-Rich Regions Have A Comparative Advantage In Food Production? Improving The Representation Of Water For Agriculture In Economic Models," Economic Systems Research, Taylor & Francis Journals, vol. 24(4), pages 371-389, July.
    3. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Xie & Biliang Luo & Wenjing Zhong, 2021. "How Are Smallholder Farmers Involved in Digital Agriculture in Developing Countries: A Case Study from China," Land, MDPI, vol. 10(3), pages 1-16, March.
    2. Oliver Falck & Johannes Koenen, 2020. "Rohstoff „Daten“: Volkswirtschaflicher Nutzen von Datenbereitstellung – eine Bestandsaufnahme," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 113, October.
    3. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    4. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    5. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Eduardo Rodrigues Sanguinet & Francisco de Borja García-García, 2023. "Rural-Urban Linkages: Regional Financial Business Services’ Integration into Chilean Agri-Food Value Chains," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    7. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    8. Tianyu Qin & Lijun Wang & Yanxin Zhou & Liyue Guo & Gaoming Jiang & Lei Zhang, 2022. "Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    9. Viet, Nguyen Quoc & Behdani, Behzad & Bloemhof, Jacqueline, 2018. "Value of Information to Improve Daily Operations in High-Density Logistics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
    10. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitization of the Agricultural Sector: The Impact of ICT on the Development of Enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), January.
    11. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    12. Li, Lei & Lin, Jiabao & Ouyang, Ye & Luo, Xin (Robert), 2022. "Evaluating the impact of big data analytics usage on the decision-making quality of organizations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    13. Panos Constantinides & Ola Henfridsson & Geoffrey G. Parker, 2018. "Introduction—Platforms and Infrastructures in the Digital Age," Information Systems Research, INFORMS, vol. 29(2), pages 381-400, June.
    14. Iban, Muzaffer Can & Aksu, Oktay, 2020. "A model for big spatial rural data infrastructure in Turkey: Sensor-driven and integrative approach," Land Use Policy, Elsevier, vol. 91(C).
    15. Araujo, Inacio F. & Haddad, Eduardo A. & León, José Antonio, 2023. "Interregional Input-Output Table for Costa Rica: Database Description and Construction Steps Based on the IIOA Method," TD NEREUS 12-2023, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).
    16. Divya Suresh & Abhishek Choudhury & Yinjia Zhang & Zhiying Zhao & Rajib Shaw, 2024. "The Role of Data-Driven Agritech Startups—The Case of India and Japan," Sustainability, MDPI, vol. 16(11), pages 1-17, May.
    17. Fengwan Zhang & Xueling Bao & Xin Deng & Dingde Xu, 2022. "Rural Land Transfer in the Information Age: Can Internet Use Affect Farmers’ Land Transfer-In?," Land, MDPI, vol. 11(10), pages 1-14, October.
    18. Simon Marvin & Lauren Rickards & Jonathan Rutherford, 2024. "The urbanisation of controlled environment agriculture: Why does it matter for urban studies?," Urban Studies, Urban Studies Journal Limited, vol. 61(8), pages 1430-1450, June.
    19. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    20. Jasmin Kaur & Rozita Dara, 2023. "Analysis of Farm Data License Agreements: Do Data Agreements Adequately Reflect on Farm Data Practices and Farmers’ Data Rights?," Agriculture, MDPI, vol. 13(11), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:329-:d:757734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.