Maximization of Water Productivity and Yield of Two Iceberg Lettuce Cultivars in Hydroponic Farming System Using Magnetically Treated Saline Water
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nikolina Vidalis & Maria Kourkouvela & Dimitrios-Christos Argyris & Georgios Liakopoulos & Alexios Alexopoulos & Spyridon A. Petropoulos & Ioannis Karapanos, 2023. "The Impact of Salinity on Growth, Physio-Biochemical Characteristics, and Quality of Urospermum picroides and Reichardia picroides Plants in Varied Cultivation Regimes," Agriculture, MDPI, vol. 13(9), pages 1-26, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Das, Susanta & Kaur, Samanpreet & Sharma, Vivek, 2024. "Determination of threshold crop water stress index for sub-surface drip irrigated maize-wheat cropping sequence in semi-arid region of Punjab," Agricultural Water Management, Elsevier, vol. 301(C).
- Chauhdary, Junaid Nawaz & Bakhsh, Allah & Engel, Bernard A. & Ragab, Ragab, 2019. "Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach," Agricultural Water Management, Elsevier, vol. 221(C), pages 449-461.
- Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
- Wu, Dali & Xu, Xinxing & Chen, Yanling & Shao, Hui & Sokolowski, Eldad & Mi, Guohua, 2019. "Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China," Agricultural Water Management, Elsevier, vol. 213(C), pages 200-211.
- Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
- Chauhdary, Junaid Nawaz & Bakhsh, Allah & Ragab, Ragab & Khaliq, Abdul & Engel, Bernard A. & Rizwan, Muhammad & Shahid, Muhammad Adnan & Nawaz, Qamar, 2020. "Modeling corn growth and root zone salinity dynamics to improve irrigation and fertigation management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 230(C).
- Couto, A. & Ruiz Padín, A. & Reinoso, B., 2013. "Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 77-84.
- El-Hendawy, Salah E. & Kotab, Maher A. & Al-Suhaibani, Nasser A. & Schmidhalter, Urs, 2014. "Optimal coupling combinations between the irrigation rate and glycinebetaine levels for improving yield and water use efficiency of drip-irrigated maize grown under arid conditions," Agricultural Water Management, Elsevier, vol. 140(C), pages 69-78.
- Faloye, O.T. & Alatise, M.O. & Ajayi, A.E. & Ewulo, B.S., 2019. "Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation," Agricultural Water Management, Elsevier, vol. 217(C), pages 165-178.
- Zhou, Lifeng & He, Jianqiang & Qi, Zhijuan & Dyck, Miles & Zou, Yufeng & Zhang, Tibin & Feng, Hao, 2018. "Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency," Agricultural Water Management, Elsevier, vol. 199(C), pages 190-200.
- Zhou, Lifeng & Feng, Hao & Zhao, Ying & Qi, Zhijuan & Zhang, Tibin & He, Jianqiang & Dyck, Miles, 2017. "Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil," Agricultural Water Management, Elsevier, vol. 184(C), pages 114-123.
- Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
- Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
- Guanghua Yin & Jian Gu & Fasheng Zhang & Liang Hao & Peifei Cong & Zuoxin Liu, 2014. "Maize Yield Response to Water Supply and Fertilizer Input in a Semi-Arid Environment of Northeast China," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
- Li, Cheng & Feng, Hao & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Wu, Wenjie & Zhang, Tibin & Dong, Qin’ge & Siddique, Kadambot H.M., 2022. "Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas," Agricultural Water Management, Elsevier, vol. 262(C).
- El-Hendawy, Salah E. & Hassan, Wael M. & Al-Suhaibani, Nasser A. & Schmidhalter, Urs, 2017. "Spectral assessment of drought tolerance indices and grain yield in advanced spring wheat lines grown under full and limited water irrigation," Agricultural Water Management, Elsevier, vol. 182(C), pages 1-12.
- Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).
- Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).
More about this item
Keywords
magnetic water treatment; hydroponics; soilless; iceberg lettuce; seawater; water productivity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:1:p:101-:d:722885. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.