IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1828-d960313.html
   My bibliography  Save this article

Potential Impact of Future Climates on Rice Production in Ecuador Determined Using Kobayashi’s ‘Very Simple Model’

Author

Listed:
  • Diego Portalanza

    (Climate Research Group, Department of Physics, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria 97105-900, RS, Brazil)

  • Finbarr G. Horgan

    (EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland
    Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Escuela de Agronomía, Casilla 7-D, Curicó 334900, Chile
    Centre for Pesticide Suicide Prevention, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK)

  • Valeria Pohlmann

    (Faculty of Agronomy, Department of Plant Science, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil)

  • Santiago Vianna Cuadra

    (Brazilian Agricultural Research Corporation (EMBRAPA), Brasília 70770-901, DF, Brazil)

  • Malena Torres-Ulloa

    (Escuela Superior Politécnica del Litoral, Facultad de Ciencias de la Vida, Guayaquil 090902, Ecuador)

  • Eduardo Alava

    (Escuela Superior Politécnica del Litoral, Facultad de Ciencias de la Vida, Guayaquil 090902, Ecuador)

  • Simone Ferraz

    (Climate Research Group, Department of Physics, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria 97105-900, RS, Brazil)

  • Angelica Durigon

    (Climate Research Group, Department of Physics, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria 97105-900, RS, Brazil)

Abstract

Rice ( Oryza sativa L.) is the main staple food of more than 50% of the world’s population. However, global production may need to increase by more than 70% before 2050 to meet global food requirements despite increasing challenges due to environmental degradation, a changing climate, and extreme weather events. Rice production in Ecuador, mainly concentrated in lowland tropical plains, declined in recent years. In this paper, we aim to calibrate and validate Kobayashi’s ‘Very Simple Model’ (VSM) and, using downscaled corrected climate data, to quantify the potential impact of climate change on rice yields for Ecuador’s two main rice-growing provinces. The negative impact is expected to be highest (up to −67%; 2946 tons) under the Representative Concentration Pathway (RCP) 8.5, with a lower impact under RCP 2.6 (−36%; 1650 tons) yield reduction in the Guayas province. A positive impact on yield is predicted for Los Ríos Province (up to 9%; 161 tons) under RCP 8.5. These different impacts indicate the utility of fine-scale analyses using simple models to make predictions that are relevant to regional production scenarios. Our prediction of possible changes in rice productivity can help policymakers define a variety of requirements to meet the demands of a changing climate.

Suggested Citation

  • Diego Portalanza & Finbarr G. Horgan & Valeria Pohlmann & Santiago Vianna Cuadra & Malena Torres-Ulloa & Eduardo Alava & Simone Ferraz & Angelica Durigon, 2022. "Potential Impact of Future Climates on Rice Production in Ecuador Determined Using Kobayashi’s ‘Very Simple Model’," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1828-:d:960313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Peng Su & Anyu Zhang & Ran Wang & Jing’ai Wang & Yuan Gao & Fenggui Liu, 2021. "Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    3. Jing Wang & Enli Wang & Xiaoguang Yang & Fusuo Zhang & Hong Yin, 2012. "Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation," Climatic Change, Springer, vol. 113(3), pages 825-840, August.
    4. Arunrat, Noppol & Pumijumnong, Nathsuda & Hatano, Ryusuke, 2018. "Predicting local-scale impact of climate change on rice yield and soil organic carbon sequestration: A case study in Roi Et Province, Northeast Thailand," Agricultural Systems, Elsevier, vol. 164(C), pages 58-70.
    5. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    6. Chun, Jong Ahn & Li, Sanai & Wang, Qingguo & Lee, Woo-Seop & Lee, Eun-Jeong & Horstmann, Nina & Park, Hojeong & Veasna, Touch & Vanndy, Lim & Pros, Khok & Vang, Seng, 2016. "Assessing rice productivity and adaptation strategies for Southeast Asia under climate change through multi-scale crop modeling," Agricultural Systems, Elsevier, vol. 143(C), pages 14-21.
    7. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilarasu Arivelarasan & V. S. Manivasagam & Vellingiri Geethalakshmi & Kulanthaivel Bhuvaneswari & Kiruthika Natarajan & Mohan Balasubramanian & Ramasamy Gowtham & Raveendran Muthurajan, 2023. "How Far Will Climate Change Affect Future Food Security? An Inquiry into the Irrigated Rice System of Peninsular India," Agriculture, MDPI, vol. 13(3), pages 1-20, February.
    2. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    3. Temitope Oluwaseun Ojo & Abiodun A. Ogundeji & Chijioke U. Emenike, 2022. "Does Adoption of Climate Change Adaptation Strategy Improve Food Security? A Case of Rice Farmers in Ogun State, Nigeria," Land, MDPI, vol. 11(11), pages 1-16, October.
    4. Ying Xu & Christopher Findlay, 2019. "Farmers’ constraints, governmental support and climate change adaptation: evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 866-880, October.
    5. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    6. Jeetendra Prakash Aryal & Tek Bahadur Sapkota & Dil Bahadur Rahut & Hom Nath Gartaula & Clare Stirling, 2022. "Gender and climate change adaptation: A case of Ethiopian farmers," Natural Resources Forum, Blackwell Publishing, vol. 46(3), pages 263-288, August.
    7. Barooah, Prapti & Alvi, Muzna & Ringler, Claudia & Pathak, Vishal, 2023. "Gender, agriculture policies, and climate-smart agriculture in India," Agricultural Systems, Elsevier, vol. 212(C).
    8. Dennis Junior Choruma & Frank Chukwuzuoke Akamagwuna & Nelson Oghenekaro Odume, 2022. "Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa," Agriculture, MDPI, vol. 12(6), pages 1-24, May.
    9. Sahrish Saeed & Muhammad Sohail Amjad Makhdum & Sofia Anwar & Muhammad Rizwan Yaseen, 2023. "Climate Change Vulnerability, Adaptation, and Feedback Hypothesis: A Comparison of Lower-Middle, Upper-Middle, and High-Income Countries," Sustainability, MDPI, vol. 15(5), pages 1-25, February.
    10. Oludare Sunday Durodola & Khaldoon A. Mourad, 2020. "Modelling the Impacts of Climate Change on Soybeans Water Use and Yields in Ogun-Ona River Basin, Nigeria," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
    11. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    12. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    13. Md Nadiruzzaman & Mahjabeen Rahman & Uma Pal & Simon Croxton & Md Bazlur Rashid & Aditya Bahadur & Saleemul Huq, 2021. "Impact of Climate Change on Cotton Production in Bangladesh," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    14. Chao Deng & Weiguang Wang, 2019. "Runoff Predicting and Variation Analysis in Upper Ganjiang Basin under Projected Climate Changes," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    15. Yong Liu & Jorge Ruiz-Menjivar & Junbiao Zhang, 2023. "Do soil nutrient management practices improve climate resilience? Empirical evidence from rice farmers in central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10029-10054, September.
    16. Yinglian Qi & Xiaoyan Pu & Yaxiong Li & Dingai Li & Mingrui Huang & Xuan Zheng & Jiaxin Guo & Zhi Chen, 2022. "Prediction of Suitable Distribution Area of Plateau pika ( Ochotona curzoniae ) in the Qinghai–Tibet Plateau under Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    17. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    18. Mitra, Archisman & Bouwer, Roy & Balasubramanya, Soumya & Taron, Avinandan, 2022. "Willingness to pay for bundled agricultural insurance products – results from a discrete choice experiment in Bihar, India," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322159, Agricultural and Applied Economics Association.
    19. Somasundaram Jayaraman & Yash P. Dang & Anandkumar Naorem & Kathryn L. Page & Ram C. Dalal, 2021. "Conservation Agriculture as a System to Enhance Ecosystem Services," Agriculture, MDPI, vol. 11(8), pages 1-14, July.
    20. Ahmed Awad & Wan Luo & Nadhir Al-Ansari & Ahmed Elbeltagi & Mustafa El-Rawy & Hesham N. Farres & Mohamed EL-Sayed Gabr, 2021. "Farmers’ Awareness in the Context of Climate Change: An Underutilized Way for Ensuring Sustainable Farmland Adaptation and Surface Water Quality," Sustainability, MDPI, vol. 13(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1828-:d:960313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.