IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1551-d925614.html
   My bibliography  Save this article

Unravelling the Efficient Applications of Zinc and Selenium for Mitigation of Abiotic Stresses in Plants

Author

Listed:
  • Retwika Ganguly

    (Department of Botany, Scottish Church College, Kolkata 700006, India)

  • Anik Sarkar

    (Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India)

  • Disha Dasgupta

    (Department of Botany, Scottish Church College, Kolkata 700006, India)

  • Krishnendu Acharya

    (Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India)

  • Chetan Keswani

    (Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia)

  • Victoria Popova

    (Rostov Research Institute of Obstetrics and Paediatrics, Rostov-on-Don 344012, Russia)

  • Tatiana Minkina

    (Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia)

  • Aleksey Yu Maksimov

    (Rostov Research Institute of Oncology, Rostov-on-Don 344037, Russia)

  • Nilanjan Chakraborty

    (Department of Botany, Scottish Church College, Kolkata 700006, India)

Abstract

Abiotic stress factors are considered a serious threat to various growth parameters of crop plants. Stressors such as drought, salinity, and heavy metals (HMs) hamper the chlorophyll content in plants, resulting in low photosynthesis, hinder the integrity of cell membranes, reduce biomass, and overall growth and development of crops which ultimately results in the sharp decline of crop yield. Under such stressful conditions, various strategies are employed to overcome hazardous effects. Application of Zinc (Zn) or Selenium (Se) in different forms is an effective way to alleviate the abiotic stresses in plants. Zn and Se play a pivotal role in enhancing the chlorophyll level to improve photosynthesis, reducing oxidative stress by limiting reactive oxygen species (ROS) production, controlling HMs absorption by plant roots and their accumulation in the plant body, maintaining homeostasis, and alleviating all the detrimental effects caused by abiotic stress factors. The current review is focused on the usefulness of Zn and Se application, their uptake, sensitization, and different defence mechanisms to relieve adverse effects of abiotic stresses (such as drought, salinity, and HMs) on crops. In this connection, research gaps have also been highlighted.

Suggested Citation

  • Retwika Ganguly & Anik Sarkar & Disha Dasgupta & Krishnendu Acharya & Chetan Keswani & Victoria Popova & Tatiana Minkina & Aleksey Yu Maksimov & Nilanjan Chakraborty, 2022. "Unravelling the Efficient Applications of Zinc and Selenium for Mitigation of Abiotic Stresses in Plants," Agriculture, MDPI, vol. 12(10), pages 1-18, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1551-:d:925614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Umair Hassan & Muhammad Aamer & Muhammad Umer Chattha & Tang Haiying & Babar Shahzad & Lorenzo Barbanti & Muhammad Nawaz & Adnan Rasheed & Aniqa Afzal & Ying Liu & Huang Guoqin, 2020. "The Critical Role of Zinc in Plants Facing the Drought Stress," Agriculture, MDPI, vol. 10(9), pages 1-20, September.
    2. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ionela Cătălina Vasilachi & Vasile Stoleru & Maria Gavrilescu, 2023. "Analysis of Heavy Metal Impacts on Cereal Crop Growth and Development in Contaminated Soils," Agriculture, MDPI, vol. 13(10), pages 1-50, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    4. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    5. Yun Wu & Hui Wang & Jinbin Zhu, 2022. "Influence of Reclaimed Water Quality on Infiltration Characteristics of Typical Subtropical Zone Soils: A Case Study in South China," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    6. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    9. Yan, Qiuyan & Dong, Fei & Yang, Feng & Lu, Jinxiu & Li, Feng & Zhang, Jiancheng & Dong, Jinlong & Li, Junhui, 2019. "Improved yield and water storage of the wheat-maize rotation system due to double-blank row mulching during the wheat stage," Agricultural Water Management, Elsevier, vol. 213(C), pages 903-912.
    10. Bosco Justin Shio & Shaomin Guo & Ruifang Zhang & Sikander Khan Tanveer & Jiangbo Hai, 2022. "Diverse Planting Density-Driven Nutrient and Yield Enhancement of Sweet Corn by Zinc and Selenium Foliar Application," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    11. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    13. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Zhang, Peng & Wei, Ting & Han, Qingfang & Ren, Xiaolong & Jia, Zhikuan, 2020. "Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China," Agricultural Water Management, Elsevier, vol. 241(C).
    15. Zhang, Yuanhong & Wang, Rui & Wang, Shulan & Ning, Fang & Wang, Hao & Wen, Pengfei & Li, Ao & Dong, Zhaoyang & Xu, Zonggui & Zhang, Yujiao & Li, Jun, 2019. "Effect of planting density on deep soil water and maize yield on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    16. Gu, Xiaobo & Cai, Huanjie & Fang, Heng & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2021. "Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Lin, Wen & Liu, Wenzhao, 2016. "Establishment and application of spring maize yield to evapotranspiration boundary function in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 345-349.
    18. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    19. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    20. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1551-:d:925614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.