IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i4p285-d524465.html
   My bibliography  Save this article

Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize ( Zea mays L.) Cultivars under Drought Stress

Author

Listed:
  • Mohamed Abbas

    (Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt)

  • Hashim Abdel-Lattif

    (Agronomy Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt)

  • Mohamed Shahba

    (Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt)

Abstract

Drought stress is seriously affecting maize production. To investigate the influence of calcium (Ca) foliar application on maize production and chemical composition of grains under drought stress, two experiments were carried out at Cairo University Research Station, Giza, Egypt, during the summer seasons of 2018 and 2019. The experimental design was split-split plot design with a completely randomized blocks arrangement with three replications. Water regimes were assigned to the main plots [100 (control), 75, and 50% of estimated evapotranspiration]. Calcium levels (zero and 50 mg/L) were assigned to the sub plots. Maize cultivars (SC-P3444, Sammaz-35 and EVDT) were assigned to the sub-sub plots. Three maize cultivars were sprayed with Ca solution concentration (50 mg/L) under normal and drought conditions. The control treatment (0 mg/L) was sprayed with an equal amount of distilled water for comparison. Results indicated a significant decrease in total yield and grain characteristics [protein, ash, total sugars, nitrogen (N), phosphorus (P), potassium (K), and iron (Fe) contents] as a response of drought. Calcium foliar application significantly increased maize yield, protein, ash, carbohydrates, starch, total sugars, and ionic contents of grains, except for manganese (Mn), under all irrigation levels. Based on the drought tolerance index (DTI), only cultivar SC-P3444 showed drought tolerance while cultivars Sammaz-35 and EVDT were sensitive to drought stress. Foliar application of Ca on SC-P3444 cultivar achieved the highest grain yield per hectare (8061 kg) under the water regime of 100% of the total evapotranspiration, followed by Sammaz-35 (7570 kg), and EVDT (7191 kg) cultivars. At the water regime of 75% of estimated evapotranspiration (75% irrigation), Ca foliar application increased grain yield by 16, 13 and 14% in SC-P3444, Sammaz-35, and EVDT, respectively. At the water regime of 50% of the estimated evapotranspiration (50% irrigation), Ca foliar application increased grain yield by 17, 16, and 13% in SC-P3444, Sammaz-35, and EVDT, respectively. In brief, Ca had a clear impact on productivity and grain quality with important implications for maize yield under normal and water stress conditions. Our findings demonstrate that foliar application of Ca enabled drought stressed maize plants to survive better under stress. The most water stress tolerant cultivar was SC-P3444 followed by Sammaz-35 and EVDT under drought stress.

Suggested Citation

  • Mohamed Abbas & Hashim Abdel-Lattif & Mohamed Shahba, 2021. "Ameliorative Effects of Calcium Sprays on Yield and Grain Nutritional Composition of Maize ( Zea mays L.) Cultivars under Drought Stress," Agriculture, MDPI, vol. 11(4), pages 1-13, March.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:285-:d:524465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/4/285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/4/285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    2. Libing Song & Jiming Jin & Jianqiang He, 2019. "Effects of Severe Water Stress on Maize Growth Processes in the Field," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    3. Pandey, R. K. & Maranville, J. W. & Admou, A., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components," Agricultural Water Management, Elsevier, vol. 46(1), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    2. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    4. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    5. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    7. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    8. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    9. Yao Pan & Stephen C Smith & Munshi Sulaiman, 2018. "Agricultural Extension and Technology Adoption for Food Security: Evidence from Uganda," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(4), pages 1012-1031.
    10. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    12. Zand-Parsa, Sh. & Sepaskhah, A.R. & Ronaghi, A., 2006. "Development and evaluation of integrated water and nitrogen model for maize," Agricultural Water Management, Elsevier, vol. 81(3), pages 227-256, March.
    13. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    14. Sandhu, Rupinder & Irmak, Suat, 2020. "Performance assessment of Hybrid-Maize model for rainfed, limited and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 242(C).
    15. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    16. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    17. Ran, Junjun & Ran, Hui & Ma, Longfei & Jennings, Stewart A. & Yu, Tinggao & Deng, Xin & Yao, Ning & Hu, Xiaotao, 2023. "Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China," Agricultural Water Management, Elsevier, vol. 285(C).
    18. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    19. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    20. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:285-:d:524465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.