IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i12p1270-d702183.html
   My bibliography  Save this article

Florpyrauxifen-Benzyl Selectivity to Rice

Author

Listed:
  • Juan Camilo Velásquez

    (Crop Protection Graduate Program (Programa de pós Gradução em Fitossanidade), Federal University of Pelotas, Pelotas 96160-000, Brazil
    Fondo Latinoamericano para Arroz Riego (FLAR), The International Center for Tropical Agriculture (CIAT), Palmira 763537, Colombia)

  • Angela Das Cas Bundt

    (AgriScience, Mogi Mirim 13800-000, Brazil)

  • Edinalvo Rabaioli Camargo

    (Crop Protection Graduate Program (Programa de pós Gradução em Fitossanidade), Federal University of Pelotas, Pelotas 96160-000, Brazil)

  • André Andres

    (Brazilian Agricultural Research Corporation (Embrapa), Cima Temperado Station, Pelotas 96010-971, Brazil)

  • Vívian Ebeling Viana

    (Crop Protection Graduate Program (Programa de pós Gradução em Fitossanidade), Federal University of Pelotas, Pelotas 96160-000, Brazil)

  • Verónica Hoyos

    (Facultad de Ingeniería, Universidad del Magdalena, Santa Marta 470004, Colombia)

  • Guido Plaza

    (Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia)

  • Luis Antonio de Avila

    (Crop Protection Graduate Program (Programa de pós Gradução em Fitossanidade), Federal University of Pelotas, Pelotas 96160-000, Brazil)

Abstract

Florpyrauxifen-benzyl (FPB) is a new class of auxinic herbicide developed for selective weed control in rice. This study aimed to evaluate the effect of environmental conditions, P450 inhibitors, rice cultivar response, and gene expression on FPB selectivity in rice. Field experiments established in a randomized block design showed that rice plant injury due to two FPB rates (30 and 60 g ai ha −1 ) was affected by planting time and rice stage at herbicide application. The injury was higher at the earliest planting season and more in younger plants (V 2 ) than larger (V 6 and R 0 ). However, no yield reduction was detected. Under greenhouse conditions, two dose-response experiments in a randomized block design showed that spraying malathion (1 kg ha −1 ) before FPB application did not reduce herbicide selectivity. The addition of two P450 inhibitors (dietholate and piperonyl butoxide, 10 g a.i. seed-kg −1 and 4.2 kg ai ha −1 , respectively) decreased the doses to cause 50% of plant injury (ED 50 ) and growth reduction (GR 50 ). However, it seems not to compromise crop selectivity. BRS Pampeira cultivar showed lower ED 50 and GR 50 than IRGA 424 RI. A growth chamber experiment was conducted in a completely randomized design to evaluate the gene expression of rice plants sprayed with FPB (30 and 60 g ai ha −1 ). Results showed downregulation of OsWAKL21.2 , an esterase probably related to bio-activation of FPB-ester. However, no effect was detected on CYP71A21 monooxygenase and OsGSTL transferase, enzymes probably related to FPB degradation. Further research should focus on understanding FBP bio-activation as the selective mechanism.

Suggested Citation

  • Juan Camilo Velásquez & Angela Das Cas Bundt & Edinalvo Rabaioli Camargo & André Andres & Vívian Ebeling Viana & Verónica Hoyos & Guido Plaza & Luis Antonio de Avila, 2021. "Florpyrauxifen-Benzyl Selectivity to Rice," Agriculture, MDPI, vol. 11(12), pages 1-19, December.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:12:p:1270-:d:702183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/12/1270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/12/1270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Ritz & Florent Baty & Jens C Streibig & Daniel Gerhard, 2015. "Dose-Response Analysis Using R," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Avila & Nilda Roma-Burgos, 2023. "Herbicide Physiology and Environmental Fate," Agriculture, MDPI, vol. 13(6), pages 1-2, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natasja Krog Noer & Majken Pagter & Simon Bahrndorff & Anders Malmendal & Torsten Nygaard Kristensen, 2020. "Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    2. Pâmela Carvalho-Moore & Gulab Rangani & James Heiser & Douglas Findley & Steven J. Bowe & Nilda Roma-Burgos, 2021. "PPO2 Mutations in Amaranthus palmeri : Implications on Cross-Resistance," Agriculture, MDPI, vol. 11(8), pages 1-13, August.
    3. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Yirgalem Eshete & Bamlaku Alamirew & Zewdie Bishaw, 2021. "Yield and Cost Effects of Plot-Level Wheat Seed Rates and Seed Recycling Practices in the East Gojam Zone, Amhara Region, Ethiopia: Application of the Dose–Response Model," Sustainability, MDPI, vol. 13(7), pages 1-14, March.
    5. Milan Brankov & Bruno Canella Vieira & Miloš Rajković & Milena Simić & Jelena Vukadinović & Violeta Mandić & Vesna Dragičević, 2023. "Herbicide drift vs. crop resilience - the influence of micro-rates," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(4), pages 161-169.
    6. Elsa Brunet-Ratnasingham & Sacha Morin & Haley E. Randolph & Marjorie Labrecque & Justin Bélair & Raphaël Lima-Barbosa & Amélie Pagliuzza & Lorie Marchitto & Michael Hultström & Julia Niessl & Rose Cl, 2024. "Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Johanna Zerbib & Marica Rosaria Ippolito & Yonatan Eliezer & Giuseppina Feudis & Eli Reuveni & Anouk Savir Kadmon & Sara Martin & Sonia Viganò & Gil Leor & James Berstler & Julia Muenzner & Michael Mü, 2024. "Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    9. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Tea Pemovska & Johannes W. Bigenzahn & Ismet Srndic & Alexander Lercher & Andreas Bergthaler & Adrián César-Razquin & Felix Kartnig & Christoph Kornauth & Peter Valent & Philipp B. Staber & Giulio Sup, 2021. "Metabolic drug survey highlights cancer cell dependencies and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    11. Amany S. Ibrahim & Gomaa A. M. Ali & Amro Hassanein & Ahmed M. Attia & Ezzat R. Marzouk, 2022. "Toxicity and Uptake of CuO Nanoparticles: Evaluation of an Emerging Nanofertilizer on Wheat ( Triticum aestivum L.) Plant," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    12. Muhammad Javaid Akhter & Solvejg Kopp Mathiassen & Zelalem Eshetu Bekalu & Henrik Brinch-Pedersen & Per Kudsk, 2021. "Increased Activity of 5-Enolpyruvylshikimate-3-phosphate Synthase (EPSPS) Enzyme Describe the Natural Tolerance of Vulpia myuros to Glyphosate in Comparison with Apera spica-venti," Agriculture, MDPI, vol. 11(8), pages 1-15, July.
    13. Ricardo Alcántara-de la Cruz & Gabriel da Silva Amaral & Guilherme Moraes de Oliveira & Luiz Renato Rufino & Fernando Alves de Azevedo & Leonardo Bianco de Carvalho & Maria Fátima das Graças Fernandes, 2020. "Glyphosate Resistance in Amaranthus viridis in Brazilian Citrus Orchards," Agriculture, MDPI, vol. 10(7), pages 1-10, July.
    14. Travis J. Kochan & Sophia H. Nozick & Aliki Valdes & Sumitra D. Mitra & Bettina H. Cheung & Marine Lebrun-Corbin & Rachel L. Medernach & Madeleine B. Vessely & Jori O. Mills & Christopher M. R. Axline, 2023. "Klebsiella pneumoniae clinical isolates with features of both multidrug-resistance and hypervirulence have unexpectedly low virulence," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Alexander Ingo LINN & Pavlína KOŠNAROVÁ & Josef SOUKUP & Roland GERHARDS, 2018. "Detecting herbicide-resistant Apera spica-venti with a chlorophyll fluorescence agar test," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 386-392.
    16. J. M. Beman & S. M. Vargas & J. M. Wilson & E. Perez-Coronel & J. S. Karolewski & S. Vazquez & A. Yu & A. E. Cairo & M. E. White & I. Koester & L. I. Aluwihare & S. D. Wankel, 2021. "Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    17. Florian P. Bayer & Manuel Gander & Bernhard Kuster & Matthew The, 2023. "CurveCurator: a recalibrated F-statistic to assess, classify, and explore significance of dose–response curves," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Ignacio Amaro-Blanco & Yolanda Romano & Jose Antonio Palmerin & Raquel Gordo & Candelario Palma-Bautista & Rafael De Prado & María Dolores Osuna, 2021. "Different Mutations Providing Target Site Resistance to ALS- and ACCase-Inhibiting Herbicides in Echinochloa spp. from Rice Fields," Agriculture, MDPI, vol. 11(5), pages 1-12, April.
    19. Alexandra Schappert & Alexander I. Linn & Dominic J. Sturm & Roland Gerhards, 2019. "Weed suppressive ability of cover crops under water-limited conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(11), pages 541-548.
    20. David A Knowles & Gina Bouchard & Sylvia Plevritis, 2019. "Sparse discriminative latent characteristics for predicting cancer drug sensitivity from genomic features," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:12:p:1270-:d:702183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.