IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i12p1224-d694790.html
   My bibliography  Save this article

Continuous Cropping Changes the Composition and Diversity of Bacterial Communities: A Meta-Analysis in Nine Different Fields with Different Plant Cultivation

Author

Listed:
  • Mohammad Murtaza Alami

    (College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Qiuling Pang

    (College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Zedan Gong

    (College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Tewu Yang

    (College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Daiqun Tu

    (Bureau of Agriculture and Rural Affairs of Lichuan City, Lichuan 445400, China)

  • Ouyang Zhen

    (College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Weilong Yu

    (College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

  • Mohammad Jawad Alami

    (Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Xuekui Wang

    (College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

Chinese goldthread ( Coptis chinensis Franch.) represents one of the most important medicinal plants with diverse medicinal applications, but it easily suffers from continuous cropping obstacles in the plantation. In this study, we have selected eight different continuously cropped fields with C. chinensis and fallow field, providing detailed information regarding the diversity and composition of the rhizospheric bacterial communities. We have found a significant difference between fallow field (LH) and other continuously cropped fields in soil pH; the total content of nitrogen, phosphorus, and potassium; and soil enzyme activities. The results indicate that continuous cropping had a significant effect on soil physicochemical properties and enzyme activities under different plant cultivations. The relative abundance of bacterial phyla was significantly altered among the fields; for example, proteobacteria and Actinobacteria were observed to be higher in continuous cropping of maize (HY6) and lower in sweet potato continuous cropping (HH). Alpha diversity analysis showed that different plants with different years of continuous cropping could change the diversity of bacterial communities, among which the effect of maize and Polygonum multiflorum continuous cropping were most significant. Principle coordinate analysis (PCoA) showed that continuously cropped C. chinensis (LZ) and cabbage continuously cropped for 2 years (HS) were slightly clustered together and separated from LH and others. The results showed that the similarity of the bacterial community in the same crop rotation was higher, which further indicated that the bacterial community structure was significantly altered by the continuous cropping system and plant species. Our study provides a foundation for future agricultural research to improve microbial activity and increase crops/cash-crops productivity under a continuous cropping system and mitigate continuous cropping obstacles.

Suggested Citation

  • Mohammad Murtaza Alami & Qiuling Pang & Zedan Gong & Tewu Yang & Daiqun Tu & Ouyang Zhen & Weilong Yu & Mohammad Jawad Alami & Xuekui Wang, 2021. "Continuous Cropping Changes the Composition and Diversity of Bacterial Communities: A Meta-Analysis in Nine Different Fields with Different Plant Cultivation," Agriculture, MDPI, vol. 11(12), pages 1-17, December.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:12:p:1224-:d:694790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/12/1224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/12/1224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun-Li Xiang & Sheng-Dan Wu & Sheng-Xian Yu & Yang Liu & Florian Jabbour & Andrey S Erst & Liang Zhao & Wei Wang & Zhi-Duan Chen, 2016. "The First Comprehensive Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Classification," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    2. Bradley J. Cardinale & Diane S. Srivastava & J. Emmett Duffy & Justin P. Wright & Amy L. Downing & Mahesh Sankaran & Claire Jouseau, 2006. "Effects of biodiversity on the functioning of trophic groups and ecosystems," Nature, Nature, vol. 443(7114), pages 989-992, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Wang & Xiaobo Huang & Jianrong Su, 2022. "Tree Species Diversity and Stand Attributes Differently Influence the Ecosystem Functions of Pinus yunnanensis Secondary Forests under the Climate Context," Sustainability, MDPI, vol. 14(14), pages 1-12, July.
    2. Martínez-Jauregui, María & White, Piran C.L. & Touza, Julia & Soliño, Mario, 2019. "Untangling perceptions around indicators for biodiversity conservation and ecosystem services," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    3. Marino, Davide & Gaglioppa, Pierluca & Schirpke, Uta & Guadagno, Rossella & Marucci, Angelo & Palmieri, Margherita & Pellegrino, Davide & Gusmerotti, Natalia, 2014. "Assessment and governance of Ecosystem Services for improving management effectiveness of Natura 2000 sites," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 3(3), pages 1-19, December.
    4. Meinard, Yves & Grill, Philippe, 2011. "The economic valuation of biodiversity as an abstract good," Ecological Economics, Elsevier, vol. 70(10), pages 1707-1714, August.
    5. Kangwei Jiang & Qingqing Zhang & Yafei Wang & Hong Li & Yongqiang Yang & Tursunnay Reyimu, 2023. "The Combination of Plant Diversity and Soil Microbial Diversity Directly and Actively Drives the Multifunctionality of Grassland Ecosystems in the Middle Part of the Northern Slopes of the Tian Shan u," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    6. Plekhanova, Elena & Niklaus, Pascal A. & Gastellu-Etchegorry, Jean-Philippe & Schaepman-Strub, Gabriela, 2021. "How does leaf functional diversity affect the light environment in forest canopies? An in-silico biodiversity experiment," Ecological Modelling, Elsevier, vol. 440(C).
    7. Robin Naidoo & Greg Stuart-Hill & L. Weaver & Jo Tagg & Anna Davis & Andee Davidson, 2011. "Effect of Diversity of Large Wildlife Species on Financial Benefits to Local Communities in Northwest Namibia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 321-335, February.
    8. Jasmin A Godbold & Rutger Rosenberg & Martin Solan, 2009. "Species-Specific Traits Rather Than Resource Partitioning Mediate Diversity Effects on Resource Use," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-9, October.
    9. Luiz A. Domeignoz-Horta & Seraina L. Cappelli & Rashmi Shrestha & Stephanie Gerin & Annalea K. Lohila & Jussi Heinonsalo & Daniel B. Nelson & Ansgar Kahmen & Pengpeng Duan & David Sebag & Eric Verrecc, 2024. "Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Katherine Velghe & Irene Gregory-Eaves, 2013. "Body Size Is a Significant Predictor of Congruency in Species Richness Patterns: A Meta-Analysis of Aquatic Studies," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-6, February.
    11. Cai Cheng & Zekang Liu & Wei Song & Xue Chen & Zhijie Zhang & Bo Li & Mark Kleunen & Jihua Wu, 2024. "Biodiversity increases resistance of grasslands against plant invasions under multiple environmental changes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Amanda J Ashworth & Heather D Toler & Fred L Allen & Robert M Augé, 2018. "Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-19, July.
    13. Holland, R.A. & Eigenbrod, F. & Muggeridge, A. & Brown, G. & Clarke, D. & Taylor, G., 2015. "A synthesis of the ecosystem services impact of second generation bioenergy crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 30-40.
    14. Peter J Carrick & Katherine J Forsythe, 2020. "The species composition—ecosystem function relationship: A global meta-analysis using data from intact and recovering ecosystems," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    15. Silke Langenheder & Mark T Bulling & Martin Solan & James I Prosser, 2010. "Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by Environmental Complexity," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-9, May.
    16. Mondelaers, Koen & Lauwers, Ludwig H., 2011. "An (in)efficiency based measurement of economic resilience," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114648, European Association of Agricultural Economists.
    17. Xiao Deng & Hao Yin & Huadong Tan & Yi Li & Chunyuan Wu & Jiancheng Su, 2023. "Response of Soil Microbial Community Diversity to Long-Term Cultivation of Rice ( Oryza sativa L.)/Cherry Tomato ( Lycopersicon esculentum Mill.) in Rotation," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    18. Yang, Yiling & Xiong, Kangning & Xiao, Jie, 2024. "A review of agroforestry biodiversity-driven provision of ecosystem services and implications for karst desertification control," Ecosystem Services, Elsevier, vol. 67(C).
    19. Hannes Peter & Irene Ylla & Cristian Gudasz & Anna M Romaní & Sergi Sabater & Lars J Tranvik, 2011. "Multifunctionality and Diversity in Bacterial Biofilms," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-8, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:12:p:1224-:d:694790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.