IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1079-d670171.html
   My bibliography  Save this article

Prediction of Wheat Stripe Rust Occurrence with Time Series Sentinel-2 Images

Author

Listed:
  • Chao Ruan

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yingying Dong

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wenjiang Huang

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China)

  • Linsheng Huang

    (National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China)

  • Huichun Ye

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Huiqin Ma

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Anting Guo

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yu Ren

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Wheat stripe rust has a severe impact on wheat yield and quality. An effective prediction method is necessary for food security. In this study, we extract the optimal vegetation indices (VIs) sensitive to stripe rust at different time-periods, and develop a wheat stripe rust prediction model with satellite images to realize the multi-temporal prediction. First, VIs related to stripe rust stress are extracted as candidate features for disease prediction from time series Sentinel-2 images. Then, the optimal VI combinations are selected using sequential forward selection (SFS). Finally, the occurrence of wheat stripe rust in different time-periods is predicted using the support vector machine (SVM) method. The results of the features selected demonstrate that, before the jointing period, the optimal VIs are related to the biomass, pigment, and moisture of wheat. After the jointing period, the red-edge VIs related to the crop health status play important roles. The overall accuracy and Kappa coefficient of the prediction model, which is based on SVM, is generally higher than those of the k-nearest neighbor (KNN) and back-propagation neural network (BPNN) methods. The SVM method is more suitable for time series predictions of wheat stripe rust. The model obtained accuracy based on the optimal VI combinations and the SVM increased over time; the highest accuracy was 86.2%. These results indicate that the prediction model can provide guidance and suggestions for early disease prevention of the study site, and the method combines time series Sentinel-2 images and the SVM, which can be used to predict wheat stripe rust.

Suggested Citation

  • Chao Ruan & Yingying Dong & Wenjiang Huang & Linsheng Huang & Huichun Ye & Huiqin Ma & Anting Guo & Yu Ren, 2021. "Prediction of Wheat Stripe Rust Occurrence with Time Series Sentinel-2 Images," Agriculture, MDPI, vol. 11(11), pages 1-19, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1079-:d:670171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    2. Xianming Chen, 2020. "Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 239-251, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    2. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    3. M. De Donno & M. Pratelli, 2006. "A theory of stochastic integration for bond markets," Papers math/0602532, arXiv.org.
    4. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    5. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    6. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    7. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    8. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    9. Panagiota DIONYSOPOULOU & Georgios SVARNIAS & Theodore PAPAILIAS, 2021. "Total Quality Management In Public Sector, Case Study: Customs Service," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 153-168, June.
    10. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    11. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    12. Julie Holland Mortimer, 2007. "Price Discrimination, Copyright Law, and Technological Innovation: Evidence from the Introduction of DVDs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1307-1350.
    13. Suwan Shen & Xi Feng & Zhong Ren Peng, 2016. "A framework to analyze vulnerability of critical infrastructure to climate change: the case of a coastal community in Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 589-609, October.
    14. Jean-Bernard Chatelain & Kirsten Ralf, 2017. "Can We Identify the Fed's Preferences?," Working Papers halshs-01549908, HAL.
    15. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    16. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    17. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.
    18. Fischer, Andreas M. & Ranaldo, Angelo, 2011. "Does FOMC news increase global FX trading?," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2965-2973, November.
    19. Mazzlida Mat Deli & Ruhizan Mohamad Yasin, 2016. "Quality Education of Orang Asli in Malaysia," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 6(11), pages 233-240, November.
    20. Ichiro Fukunaga, 2007. "Imperfect Common Knowledge, Staggered Price Setting, and the Effects of Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1711-1739, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1079-:d:670171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.