IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p969-d650535.html
   My bibliography  Save this article

Effects of Different Water Table Depth and Salinity Levels on Quality Traits of Bread Wheat

Author

Listed:
  • İsmail Sezer

    (Department of Field Crops, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55270, Turkey)

  • Hasan Akay

    (Department of Field Crops, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55270, Turkey)

  • Zeki Mut

    (Department of Field Crops, Faculty of Agriculture and Natural Sciences, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey)

  • Hakan Arslan

    (Department of Agricultural Structures and Irrigation, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55270, Turkey)

  • Elif Öztürk

    (Department of Field Crops, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55270, Turkey)

  • Özge Doğanay Erbaş Köse

    (Department of Field Crops, Faculty of Agriculture and Natural Sciences, Bilecik Şeyh Edebali University, Bilecik 11230, Turkey)

  • Mehmet Sait Kiremit

    (Department of Agricultural Structures and Irrigation, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55270, Turkey)

Abstract

Abiotic stress factors encountered in production lands influence both the yield and the quality traits of bread wheat. This study investigated the effects of three different water table depths (30, 55, and 80 cm) and four different groundwater salinity levels (0.38, 2.0, 4.0, and 8.0 dSm −1 ) on some quality traits of bread wheat under irrigated and unirrigated conditions. The experiments were conducted in the 2018 and 2019 growing seasons in randomized blocks—factorial (three factors) experimental design with three replications under controlled conditions. The hectoliter weight, fat ratio, starch ratio, protein content, Zeleny sedimentation, wet gluten content, ash ratio, acid detergent fiber (ADF), and neutral detergent fiber (NDF) values were investigated. The hectoliter weights varied between 66.1% and 77.8 kg, fat ratios between 1.49% and 1.70%, starch ratios between 61.9% and 67.8%, protein contents between 11.9% and 13.8%, Zeleny sedimentation values between 23.5 and 28.0 mL, wet gluten contents between 25.0% and 28.8%, ash ratios between 1.43% and 1.75%, and ADF values between 2.85% and 4.12%. The quality traits were positively influenced by increasing the water table depths. With increasing the groundwater salinity levels, the hectoliter weight, fat ratio, starch ratio, and NDF values decreased, while the protein ratio, sedimentation value, wet gluten content, ash ratio, and ADF values increased.

Suggested Citation

  • İsmail Sezer & Hasan Akay & Zeki Mut & Hakan Arslan & Elif Öztürk & Özge Doğanay Erbaş Köse & Mehmet Sait Kiremit, 2021. "Effects of Different Water Table Depth and Salinity Levels on Quality Traits of Bread Wheat," Agriculture, MDPI, vol. 11(10), pages 1-13, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:969-:d:650535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wakchaure, G.C. & Minhas, P.S. & Ratnakumar, P. & Choudhary, R.L., 2016. "Optimising supplemental irrigation for wheat (Triticum aestivum L.) and the impact of plant bio-regulators in a semi-arid region of Deccan Plateau in India," Agricultural Water Management, Elsevier, vol. 172(C), pages 9-17.
    2. Mosaffa, Hamid Reza & Sepaskhah, Ali Reza, 2019. "Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods," Agricultural Water Management, Elsevier, vol. 216(C), pages 444-456.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniele Del Buono & Luca Regni & Primo Proietti, 2023. "Abiotic Stresses, Biostimulants and Plant Activity," Agriculture, MDPI, vol. 13(1), pages 1-5, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Dalvi, S.G. & Rane, J. & Reddy, K. Sammi, 2023. "Pod quality, yields responses and water productivity of okra (Abelmoschus esculentus L.) as affected by plant growth regulators and deficit irrigation," Agricultural Water Management, Elsevier, vol. 282(C).
    2. Bao, Xiaoyuan & Zhang, Baoyuan & Dai, Menglei & Liu, Xuejing & Ren, Jianhong & Gu, Limin & Zhen, Wenchao, 2024. "Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 301(C).
    3. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    5. Agossou Gadedjisso-Tossou & Tamara Avellán & Niels Schütze, 2019. "An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa," Resources, MDPI, vol. 8(4), pages 1-11, November.
    6. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    8. Dong, Xinliang & Wang, Jintao & Zhang, Xuejia & Dang, Hongkai & Singh, Bhupinder Pal & Liu, Xiaojing & Sun, Hongyong, 2022. "Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents," Agricultural Water Management, Elsevier, vol. 270(C).
    9. Yuzhao Ma & Naikun Kuang & Shengzhe Hong & Fengli Jiao & Changyuan Liu & Quanqi Li, 2021. "Water productivity of two wheat genotypes in response to no-tillage in the North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(4), pages 236-244.
    10. Wang, He & Zheng, Chunlian & Ning, Songrui & Cao, Caiyun & Li, Kejiang & Dang, Hongkai & Wu, Yuqing & Zhang, Junpeng, 2023. "Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation," Agricultural Water Management, Elsevier, vol. 286(C).
    11. Zemin Zhang & Zhanyu Zhang & Genxiang Feng & Peirong Lu & Mingyi Huang & Xinyu Zhao, 2022. "Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    12. Wakchaure, G.C. & Minhas, P.S. & Ratnakumar, P. & Choudhary, R.L., 2016. "Effect of plant bioregulators on growth, yield and water production functions of sorghum [Sorghum bicolor (L.) Moench]," Agricultural Water Management, Elsevier, vol. 177(C), pages 138-145.
    13. Wakchaure, G.C. & Minhas, P.S. & Meena, Kamlesh K. & Singh, Narendra P. & Hegade, Priti M. & Sorty, Ajay M., 2018. "Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators," Agricultural Water Management, Elsevier, vol. 199(C), pages 1-10.
    14. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Meena, K.K. & Rane, Jagadish & Pathak, H., 2021. "Quantification of water stress impacts on canopy traits, yield, quality and water productivity of onion (Allium cepa L.) cultivars in a shallow basaltic soil of water scarce zone," Agricultural Water Management, Elsevier, vol. 249(C).
    15. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Ali, Shahzad & Jan, Amanullah & Manzoor, & Sohail, Amir & Khan, Ahmad & Khan, Muhammad Ijaz & Inamullah, & Zhang, Jiahua & Daur, Ihsanullah, 2018. "Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 210(C), pages 88-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:969-:d:650535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.