IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v199y2018icp1-10.html
   My bibliography  Save this article

Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators

Author

Listed:
  • Wakchaure, G.C.
  • Minhas, P.S.
  • Meena, Kamlesh K.
  • Singh, Narendra P.
  • Hegade, Priti M.
  • Sorty, Ajay M.

Abstract

Effect of plant bio–regulators (PBRs) viz., potassium nitrate (KNO3, 15gL−1), thio–urea (TU, 500ppm), salicylic acid (SA, 10μM), gibberellic acid (GA3, 25ppm) and sodium benzoate (SB, 150mgL−1) for two years (2015–17) under various levels of deficit irrigation created using line source sprinkler system (LSS) was evaluated in onion (Allium cepa L.). The crop could sustain little water deficits and its bulb yield declined to 0.84, 0.66, 0.48, 0.35, 0.24 and 0.16 when irrigation water (IW) applied equalled 0.85, 0.70, 0.55, 0.40, 0.25 and 0.10 times the pan evaporation (CPE) against maximum yield at full irrigation (IW:CPE 1.00). Application of PBRs helped to mitigate the water stress through maintenance of leaf water content, modulating the canopy temperature and better water usage thereby improving average bulb yields by 10.1–25%. Especially KNO3 and TU were more effective under low to medium water deficits. The water productivity ranged between 7.78 and 9.61 with PBRs against 7.36kgm−3 under control. The overall water saving was 18.3, 25.7, 48.4 and 63.8% with PBRs namely GA3, SA, TU and KNO3, respectively. The marketable quality monitored in terms of bulb weight, geometric mean diameter and sphericity was significantly reduced with water deficits while it improved with PBRs. Among the other physicochemical and functional quality characteristics of the onion bulb, rehydration ratio, protein content, total soluble sugar, total phenolics content and pyruvic acid were lowered by water deficits. These were improved significantly with PBRs. Thus it was concluded that combining PBRs like KNO3 and TU can further facilitate to implement deficit irrigation technology for sustaining productivity and quality of onion under water scarce conditions.

Suggested Citation

  • Wakchaure, G.C. & Minhas, P.S. & Meena, Kamlesh K. & Singh, Narendra P. & Hegade, Priti M. & Sorty, Ajay M., 2018. "Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators," Agricultural Water Management, Elsevier, vol. 199(C), pages 1-10.
  • Handle: RePEc:eee:agiwat:v:199:y:2018:i:c:p:1-10
    DOI: 10.1016/j.agwat.2017.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Jamal, M. S. & Sammis, T. W. & Ball, S. & Smeal, D., 2000. "Computing the crop water production function for onion," Agricultural Water Management, Elsevier, vol. 46(1), pages 29-41, November.
    2. Bandyopadhyay, K.K. & Pradhan, S. & Sahoo, R.N. & Singh, Ravender & Gupta, V.K. & Joshi, D.K. & Sutradhar, A.K., 2014. "Characterization of water stress and prediction of yield of wheat using spectral indices under varied water and nitrogen management practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 115-123.
    3. Mermoud, A. & Tamini, T.D. & Yacouba, H., 2005. "Impacts of different irrigation schedules on the water balance components of an onion crop in a semi-arid zone," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 282-295, August.
    4. Pelter, Gary Q. & Mittelstadt, Robert & Leib, Brian G. & Redulla, Cristoti A., 2004. "Effects of water stress at specific growth stages on onion bulb yield and quality," Agricultural Water Management, Elsevier, vol. 68(2), pages 107-115, August.
    5. Wakchaure, G.C. & Minhas, P.S. & Ratnakumar, P. & Choudhary, R.L., 2016. "Optimising supplemental irrigation for wheat (Triticum aestivum L.) and the impact of plant bio-regulators in a semi-arid region of Deccan Plateau in India," Agricultural Water Management, Elsevier, vol. 172(C), pages 9-17.
    6. El Balla, M.M.A. & Hamid, Abdelbagi A. & Abdelmageed, A.H.A., 2013. "Effects of time of water stress on flowering, seed yield and seed quality of common onion (Allium cepa L.) under the arid tropical conditions of Sudan," Agricultural Water Management, Elsevier, vol. 121(C), pages 149-157.
    7. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    8. Bekele, Samson & Tilahun, Ketema, 2007. "Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 148-152, April.
    9. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    10. Wakchaure, G.C. & Minhas, P.S. & Ratnakumar, P. & Choudhary, R.L., 2016. "Effect of plant bioregulators on growth, yield and water production functions of sorghum [Sorghum bicolor (L.) Moench]," Agricultural Water Management, Elsevier, vol. 177(C), pages 138-145.
    11. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Meena, K.K. & Rane, Jagadish & Pathak, H., 2021. "Quantification of water stress impacts on canopy traits, yield, quality and water productivity of onion (Allium cepa L.) cultivars in a shallow basaltic soil of water scarce zone," Agricultural Water Management, Elsevier, vol. 249(C).
    2. Ved Parkash & Sukhbir Singh, 2020. "A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    3. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Rane, Jagadish & Reddy, K. Sammi, 2023. "Bulb productivity and quality of monsoon onion (Allium cepa L.) as affected by transient waterlogging at different growth stages and its alleviation with plant growth regulators," Agricultural Water Management, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Dalvi, S.G. & Rane, J. & Reddy, K. Sammi, 2023. "Pod quality, yields responses and water productivity of okra (Abelmoschus esculentus L.) as affected by plant growth regulators and deficit irrigation," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Igbadun, Henry E. & Ramalan, A.A. & Oiganji, Ezekiel, 2012. "Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria," Agricultural Water Management, Elsevier, vol. 109(C), pages 162-169.
    4. Wakchaure, G.C. & Minhas, P.S. & Ratnakumar, P. & Choudhary, R.L., 2016. "Effect of plant bioregulators on growth, yield and water production functions of sorghum [Sorghum bicolor (L.) Moench]," Agricultural Water Management, Elsevier, vol. 177(C), pages 138-145.
    5. Kifle, Mulubrehan & Gebretsadikan, T.G., 2016. "Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia," Agricultural Water Management, Elsevier, vol. 170(C), pages 133-139.
    6. Garg, N.K. & Dadhich, Sushmita M., 2014. "A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach," Agricultural Water Management, Elsevier, vol. 137(C), pages 68-74.
    7. Wakchaure, G.C. & Minhas, P.S. & Kumar, Satish & Khapte, P.S. & Rane, Jagadish & Reddy, K. Sammi, 2023. "Bulb productivity and quality of monsoon onion (Allium cepa L.) as affected by transient waterlogging at different growth stages and its alleviation with plant growth regulators," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Geries, L.S.M. & El-Shahawy, T.A. & Moursi, E.A., 2021. "Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    10. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    11. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    12. Martínez-Romero, A. & Martínez-Navarro, A. & Pardo, J.J. & Montoya, F. & Domínguez, A., 2017. "Real farm management depending on the available volume of irrigation water (part II): Analysis of crop parameters and harvest quality," Agricultural Water Management, Elsevier, vol. 192(C), pages 58-70.
    13. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
    14. El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
    15. Tari, Ali Fuat, 2016. "The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 167(C), pages 1-10.
    16. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    17. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    18. Neha & Gajender Yadav & Rajender Kumar Yadav & Ashwani Kumar & Aravind Kumar Rai & Junya Onishi & Keisuke Omori & Parbodh Chander Sharma, 2022. "Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard ( Brassica juncea L.)," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    19. Ali, M.H. & Talukder, M.S.U., 2008. "Increasing water productivity in crop production--A synthesis," Agricultural Water Management, Elsevier, vol. 95(11), pages 1201-1213, November.
    20. Uchechukwu Eze, Engr. Oliver & Emmanuel, Ugwuegbu Ikechukwu & Oyebode, M.A., 2023. "Effect Of Various Irrigation Levels And Fertilizer Materials On Water Use And Yield Of Onion Under Check Basin Irrigation," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(2), March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:199:y:2018:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.