IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i1p16-d307816.html
   My bibliography  Save this article

Methods for Management of Soilborne Diseases in Crop Production

Author

Listed:
  • Milan Panth

    (Tennessee State University, Department of Agricultural and Environmental Sciences, Otis L. Floyd Nursery Research Center, McMinnville, TN 37110, USA)

  • Samuel C. Hassler

    (Tennessee State University, Department of Agricultural and Environmental Sciences, Otis L. Floyd Nursery Research Center, McMinnville, TN 37110, USA)

  • Fulya Baysal-Gurel

    (Tennessee State University, Department of Agricultural and Environmental Sciences, Otis L. Floyd Nursery Research Center, McMinnville, TN 37110, USA)

Abstract

The significant problems caused by soilborne pathogens in crop production worldwide include reduced crop performance, decreased yield, and higher production costs. In many parts of the world, methyl bromide was extensively used to control these pathogens before the implementation of the Montreal Protocol—a global agreement to protect the ozone layer. The threats of soilborne disease epidemics in crop production, high cost of chemical fungicides and development of fungicide resistance, climate change, new disease outbreaks and increasing concerns regarding environmental as well as soil health are becoming increasingly evident. These necessitate the use of integrated soilborne disease management strategies for crop production. This article summarizes methods for management of soilborne diseases in crop production which includes the use of sanitation, legal methods, resistant cultivars/varieties and grafting, cropping system, soil solarization, biofumigants, soil amendments, anaerobic soil disinfestation, soil steam sterilization, soil fertility and plant nutrients, soilless culture, chemical control and biological control in a system-based approach. Different methods with their strengths and weaknesses, mode of action and interactions are discussed, concluding with a brief outline of future directions which might lead to the integration of described methods in a system-based approach for more effective management of soilborne diseases.

Suggested Citation

  • Milan Panth & Samuel C. Hassler & Fulya Baysal-Gurel, 2020. "Methods for Management of Soilborne Diseases in Crop Production," Agriculture, MDPI, vol. 10(1), pages 1-21, January.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:1:p:16-:d:307816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/1/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/1/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew C. Fisher & Daniel. A. Henk & Cheryl J. Briggs & John S. Brownstein & Lawrence C. Madoff & Sarah L. McCraw & Sarah J. Gurr, 2012. "Emerging fungal threats to animal, plant and ecosystem health," Nature, Nature, vol. 484(7393), pages 186-194, April.
    2. Al-Kayssi, A.W. & Al-Karaghouli, A., 2002. "A new approach for soil solarization by using paraffin-wax emulsion as a mulching material," Renewable Energy, Elsevier, vol. 26(4), pages 637-648.
    3. Luca De Benedictis & Lucia Tajoli, 2011. "The World Trade Network," The World Economy, Wiley Blackwell, vol. 34(8), pages 1417-1454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Wang & Yinli Bi & Jiayu Zhang & Shaopeng Ma, 2022. "AMF Inoculum Enhances Crop Yields of Zea mays L. ‘Chenghai No. 618’ and Glycine max L. ‘Zhonghuang No. 17’ without Disturbing Native Fugal Communities in Coal Mine Dump," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    2. Milan Panth & Anthony Witcher & Fulya Baysal-Gurel, 2021. "Response of Cover Crops to Phytopythium vexans , Phytophthora nicotianae, and Rhizoctonia solani , Major Soilborne Pathogens of Woody Ornamentals," Agriculture, MDPI, vol. 11(8), pages 1-15, August.
    3. Gorkem Sulu & Ilknur Polat & Hatice Filiz Boyaci & Aytul Yildirim & Emine Gümrükcü, 2022. "Screening and validation of three molecular markers for disease resistance in eggplant," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 58(2), pages 83-92.
    4. Silvia Traversari & Sonia Cacini & Angelica Galieni & Beatrice Nesi & Nicola Nicastro & Catello Pane, 2021. "Precision Agriculture Digital Technologies for Sustainable Fungal Disease Management of Ornamental Plants," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    5. Sebastian Soppelsa & Luisa Maria Manici & Francesco Caputo & Massimo Zago & Markus Kelderer, 2021. "Locally Available Organic Waste for Counteracting Strawberry Decline in a Mountain Specialized Cropping Area," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    6. Dhuha Sulaiman Salim Al-Daghari & Abdullah Mohammed Al-Sadi & Issa Hashil Al-Mahmooli & Rhonda Janke & Rethinasamy Velazhahan, 2023. "Biological Control Efficacy of Indigenous Antagonistic Bacteria Isolated from the Rhizosphere of Cabbage Grown in Biofumigated Soil against Pythium aphanidermatum Damping-Off of Cucumber," Agriculture, MDPI, vol. 13(3), pages 1-20, March.
    7. Erhan Erdel & Uğur Şimşek & Tuba Genç Kesimci, 2023. "Effects of Fungi on Soil Organic Carbon and Soil Enzyme Activity under Agricultural and Pasture Land of Eastern Türkiye," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    8. Anissa Poleatewich & Isobel Michaud & Brian Jackson & Matthew Krause & Liza DeGenring, 2022. "The Effect of Peat Moss Amended with Three Engineered Wood Substrate Components on Suppression of Damping-Off Caused by Rhizoctonia solani," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    9. Domingo Cesar Carrascal-Hernández & Edwin Flórez-López & Yeimmy Peralta-Ruiz & Clemencia Chaves-López & Carlos David Grande-Tovar, 2022. "Eco-Friendly Biocontrol Strategies of Alternaria Phytopathogen Fungus: A Focus on Gene-Editing Techniques," Agriculture, MDPI, vol. 12(10), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Masi, G. & Giovannetti, G. & Ricchiuti, G., 2013. "Network analysis to detect common strategies in Italian foreign direct investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1202-1214.
    2. Damoah, Kaku Attah & Giovannetti, Giorgia & Marvasi, Enrico, 2022. "Do country centrality and similarity to China matter in the allocation of belt and road projects?," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 660-674.
    3. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    4. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Célestin Coquidé & José Lages & Dima Shepelyansky, 2024. "Opinion Formation in the World Trade Network," Post-Print hal-04461784, HAL.
    6. repec:zbw:bofrdp:2017_020 is not listed on IDEAS
    7. Chessa, Michela & Persenda, Arnaud & Torre, Dominique, 2023. "Brexit and Canadadvent: An application of graphs and hypergraphs to recent international trade agreements," International Economics, Elsevier, vol. 175(C), pages 1-12.
    8. Zsuzsanna Bacsi & Mária Fekete-Farkas & Muhammad Imam Ma’ruf, 2023. "A Graph-Based Network Analysis of Global Coffee Trade—The Impact of COVID-19 on Trade Relations in 2020," Sustainability, MDPI, vol. 15(4), pages 1-32, February.
    9. Barberis, Eduardo & Freddi, Daniela & Giammetti, Raffaele & Polidori, Paolo & Teobaldelli, Désirée & Viganò, Elena, 2020. "Trade Relationships in the European Pork Value Chain: A Network Analysis," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 22(1), May.
    10. Iván Arribas & Francisco Pérez & Emili Tortosa-Ausina, 2014. "The dynamics of international trade integration: 1967–2004," Empirical Economics, Springer, vol. 46(1), pages 19-41, February.
    11. Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
    12. Yue Pu & Yunting Li & Jinjin Zhang, 2023. "Features and evolution of the ‘Belt and Road’ regional value chain: Complex network analysis," The World Economy, Wiley Blackwell, vol. 46(7), pages 2134-2156, July.
    13. Giulia Masi & Giorgio Ricchiuti, 2020. "From FDI network topology to macroeconomic instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 133-158, January.
    14. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna & Luu, Duc Thi, 2022. "The multilayer architecture of the global input-output network and its properties," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 304-341.
    15. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.
    16. Juan Lucio & Raúl Mínguez & Asier Minondo & Francisco Requena, 2016. "Networks and the Dynamics of Firms' Export Portfolio: Evidence for Mexico," The World Economy, Wiley Blackwell, vol. 39(5), pages 708-736, May.
    17. Anna Maria D’Arcangelis & Giulia Rotundo, 2016. "Complex Networks in Finance," Lecture Notes in Economics and Mathematical Systems, in: Pasquale Commendatore & Mariano Matilla-García & Luis M. Varela & Jose S. Cánovas (ed.), Complex Networks and Dynamics, pages 209-235, Springer.
    18. A. Baronchelli & T.E. Uberti, 2018. "Exports and FDI: comparing networks in the new millennium," Working Paper CRENoS 201813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    19. Zongning Wu & Hongbo Cai & Ruining Zhao & Ying Fan & Zengru Di & Jiang Zhang, 2020. "A Topological Analysis of Trade Distance: Evidence from the Gravity Model and Complex Flow Networks," Sustainability, MDPI, vol. 12(9), pages 1-17, April.
    20. Aller, Carlos & Ductor, Lorenzo & Herrerias, M.J., 2015. "The world trade network and the environment," Energy Economics, Elsevier, vol. 52(PA), pages 55-68.
    21. Glenn Magerman & Karolien De Bruyne & Jan Van Hove, 2020. "Pecking order and core‐periphery in international trade," Review of International Economics, Wiley Blackwell, vol. 28(4), pages 1113-1141, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:1:p:16-:d:307816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.