IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i12p636-d462044.html
   My bibliography  Save this article

Biodiversity of Weeds and Arthropods in Five Different Perennial Industrial Crops in Eastern Poland

Author

Listed:
  • Paweł Radzikowski

    (Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland)

  • Mariusz Matyka

    (Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland)

  • Adam Kleofas Berbeć

    (Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland)

Abstract

A growing interest in the cultivation of non-food crops on marginal lands has been observed in recent years in Poland. Marginal lands are a refuge of agroecosystems biodiversity. The impact of the cultivation of perennial industrial plants on the biodiversity of weeds and arthropods have been assessed in this study. The biodiversity monitoring study, carried out for three years, included five perennial crops: miscanthus Miscanthus × giganteus , cup plant Silphium perfoliatum , black locust Robinia pseudoacacia , poplar Populus × maximowiczii, and willow Salix viminalis . As a control area, uncultivated fallow land was chosen. The experiment was set up in eastern Poland. A decrease in plant diversity was found for miscanthus and black locust. The diversity of arthropods was the lowest for the cup plant. No decrease in the number of melliferous plants and pollinators was observed, except for the miscanthus. The biodiversity of plants and arthropods was affected by the intensity of mechanical treatments, the fertilization dose, and the use of herbicides. The biodiversity also decreased with the age of plantation.

Suggested Citation

  • Paweł Radzikowski & Mariusz Matyka & Adam Kleofas Berbeć, 2020. "Biodiversity of Weeds and Arthropods in Five Different Perennial Industrial Crops in Eastern Poland," Agriculture, MDPI, vol. 10(12), pages 1-27, December.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:636-:d:462044
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/12/636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/12/636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shortall, O.K., 2013. "“Marginal land” for energy crops: Exploring definitions and embedded assumptions," Energy Policy, Elsevier, vol. 62(C), pages 19-27.
    2. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Dariusz Załuski & Józef Tworkowski & Stefan Szczukowski, 2020. "Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity," Agriculture, MDPI, vol. 10(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Jerzy Stolarski, 2021. "Industrial and Bioenergy Crops for Bioeconomy Development," Agriculture, MDPI, vol. 11(9), pages 1-5, September.
    2. Małgorzata Kozak & Rafał Pudełko, 2021. "Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture," Agriculture, MDPI, vol. 11(2), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Helis & Maria Strzelczyk & Wojciech Golimowski & Aleksandra Steinhoff-Wrześniewska & Anna Paszkiewicz-Jasińska & Małgorzata Hawrot-Paw & Adam Koniuszy & Marek Hryniewicz, 2021. "Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range," Energies, MDPI, vol. 14(21), pages 1-16, November.
    2. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Libutti, Angela, 2018. "Agricultural “greening” and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy)," Land Use Policy, Elsevier, vol. 70(C), pages 591-600.
    3. Natalia Stefania Piotrowska & Stanisław Zbigniew Czachorowski & Mariusz Jerzy Stolarski, 2020. "Ground Beetles ( Carabidae ) in the Short-Rotation Coppice Willow and Poplar Plants—Synergistic Benefits System," Agriculture, MDPI, vol. 10(12), pages 1-23, December.
    4. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    5. Giuseppe Pulighe & Guido Bonati & Stefano Fabiani & Tommaso Barsali & Flavio Lupia & Silvia Vanino & Pasquale Nino & Pasquale Arca & Pier Paolo Roggero, 2016. "Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy," Energies, MDPI, vol. 9(11), pages 1-18, October.
    6. Ahmed, Abubakari, 2021. "Biofuel feedstock plantations closure and land abandonment in Ghana: New directions for land studies in Sub-Saharan Africa," Land Use Policy, Elsevier, vol. 107(C).
    7. Niblick, Briana & Landis, Amy E., 2016. "Assessing renewable energy potential on United States marginal and contaminated sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 489-497.
    8. Katharina Schulze & Žiga Malek & Dmitry Schepaschenko & Myroslava Lesiv & Steffen Fritz & Peter H. Verburg, 2023. "Pantropical distribution of short-rotation woody plantations: spatial probabilities under current and future climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    9. Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
    10. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Paola Iodice & Andrea Nicolini & Franco Cotana, 2022. "Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L," Energies, MDPI, vol. 15(7), pages 1-21, March.
    11. Carlos S. Ciria & Marina Sanz & Juan Carrasco & Pilar Ciria, 2019. "Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    12. Montefrio, Marvin Joseph F. & Dressler, Wolfram H., 2016. "The Green Economy and Constructions of the “Idle” and “Unproductive” Uplands in the Philippines," World Development, Elsevier, vol. 79(C), pages 114-126.
    13. Wilson, P. & Glithero, N.J. & Ramsden, S.J., 2014. "Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers," Energy Policy, Elsevier, vol. 74(C), pages 101-110.
    14. Sallustio, Lorenzo & Pettenella, Davide & Merlini, Paolo & Romano, Raoul & Salvati, Luca & Marchetti, Marco & Corona, Piermaria, 2018. "Assessing the economic marginality of agricultural lands in Italy to support land use planning," Land Use Policy, Elsevier, vol. 76(C), pages 526-534.
    15. Moritz von Cossel, 2022. "How to Reintroduce Arable Crops after Growing Perennial Wild Plant Species Such as Common Tansy ( Tanacetum vulgare L.) for Biogas Production," Energies, MDPI, vol. 15(12), pages 1-11, June.
    16. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    17. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Adam Kleofas Berbeć & Mariusz Matyka, 2020. "Biomass Characteristics and Energy Yields of Tobacco ( Nicotiana tabacum L.) Cultivated in Eastern Poland," Agriculture, MDPI, vol. 10(11), pages 1-12, November.
    19. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    20. Saha, Mithun & Eckelman, Matthew J., 2015. "Geospatial assessment of potential bioenergy crop production on urban marginal land," Applied Energy, Elsevier, vol. 159(C), pages 540-547.

    More about this item

    Keywords

    biological diversity; marginal land;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:636-:d:462044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.