IDEAS home Printed from https://ideas.repec.org/a/fip/fedfel/95426.html
   My bibliography  Save this article

Recession Prediction on the Clock

Author

Listed:
  • Thomas M. Mertens

Abstract

The jobless unemployment rate is a reliable predictor of recessions, almost always showing a turning point shortly before recessions but not at other times. Its success in predicting recessions is on par with the better-known slope of the yield curve but at a shorter horizon. Hence, it performs better for predicting recessions in the near term. Currently, this data and related series analyzed using the same method are not signaling that a recession is imminent, although that may change in coming months.

Suggested Citation

  • Thomas M. Mertens, 2022. "Recession Prediction on the Clock," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, vol. 2022(36), pages 1-06, December.
  • Handle: RePEc:fip:fedfel:95426
    as

    Download full text from publisher

    File URL: https://www.frbsf.org/wp-content/uploads/sites/4/el2022-36.pdf
    File Function: Full text - article PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    2. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    3. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    4. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    5. Chris McDonald & Craig Thamotheram & Shaun P. Vahey & Elizabeth C. Wakerly, 2016. "Assessing the economic value of probabilistic forecasts in the presence of an inflation target," Reserve Bank of New Zealand Discussion Paper Series DP2016/10, Reserve Bank of New Zealand.
    6. Sutirtha Bagchi, 2018. "A Tale of Two Cities: An Examination of Medallion Prices in New York and Chicago," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 53(2), pages 295-319, September.
    7. Agudze, Komla M. & Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco, 2022. "Markov switching panel with endogenous synchronization effects," Journal of Econometrics, Elsevier, vol. 230(2), pages 281-298.
    8. Camacho, Maximo & Martinez-Martin, Jaime, 2015. "Monitoring the world business cycle," Economic Modelling, Elsevier, vol. 51(C), pages 617-625.
    9. Nguena, Christian-Lambert & Kodila-Tedika, Oasis, 2020. "On Recessive and Expansionary Impact of Financial Development: Empirical Evidence," GLO Discussion Paper Series 555, Global Labor Organization (GLO).
    10. Massimo Guidolin & Valentina Massagli & Manuela Pedio, 2021. "Does the cost of private debt respond to monetary policy? Heteroskedasticity-based identification in a model with regimes," The European Journal of Finance, Taylor & Francis Journals, vol. 27(18), pages 1804-1833, December.
    11. repec:wrk:wrkemf:09 is not listed on IDEAS
    12. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    13. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    14. Massimo Ferrari Minesso & Laura Lebastard & Helena Mezo, 2023. "Text-Based Recession Probabilities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(2), pages 415-438, June.
    15. Sajjad Taghiyeh & David C Lengacher & Robert B Handfield, 2020. "Loss Rate Forecasting Framework Based on Macroeconomic Changes: Application to US Credit Card Industry," Papers 2006.07911, arXiv.org.
    16. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    17. Aaron J. Amburgey & Michael W. McCracken, 2023. "On the real‐time predictive content of financial condition indices for growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 137-163, March.
    18. Gaston Giordana & Michael Ziegelmeyer, 2024. "Using household-level data to guide borrower-based macro-prudential policy," Empirical Economics, Springer, vol. 66(2), pages 785-827, February.
    19. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
    20. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    21. Maximilian C. Brill & Dieter Nautz & Lea Sieckmann, 2021. "Divisia monetary aggregates for a heterogeneous euro area," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(1), pages 247-278, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedfel:95426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Federal Reserve Bank of San Francisco Research Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbsfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.