IDEAS home Printed from https://ideas.repec.org/a/fau/aucocz/au2013_005.html
   My bibliography  Save this article

Banzhaf LikeValue for Games with Interval Uncertainty

Author

Listed:
  • Lucia Pusillo

    (University of Genoa, Department of Mathematics, Genoa, Italy)

Abstract

This paper focuses on the Banzhaf value for cooperative games with a finite set of players where the coalition values, expressed by the characteristic function, are compact intervals of the real numbers. We generalize the Banzhaf value for TU-cooperative games to the class of games with interval uncertainty which have many applications. Furthermore the Banzhaf like value is here characterized through some axioms.

Suggested Citation

  • Lucia Pusillo, 2013. "Banzhaf LikeValue for Games with Interval Uncertainty," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 7(1), pages 005-014, March.
  • Handle: RePEc:fau:aucocz:au2013_005
    as

    Download full text from publisher

    File URL: http://auco.cuni.cz/mag/article/download/id/139/type/attachment
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suijs, Jeroen & Borm, Peter & De Waegenaere, Anja & Tijs, Stef, 1999. "Cooperative games with stochastic payoffs," European Journal of Operational Research, Elsevier, vol. 113(1), pages 193-205, February.
    2. Annick Laruelle & Federico Valenciano, 2001. "Shapley-Shubik and Banzhaf Indices Revisited," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 89-104, February.
    3. Andrzej S. Nowak, 1997. "note: On an Axiomatization of the Banzhaf Value without the Additivity Axiom," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(1), pages 137-141.
    4. J. Puerto & F. Fernández & Y. Hinojosa, 2008. "Partially ordered cooperative games: extended core and Shapley value," Annals of Operations Research, Springer, vol. 158(1), pages 143-159, February.
    5. S. Alparslan Gök & R. Branzei & S. Tijs, 2010. "The interval Shapley value: an axiomatization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 131-140, June.
    6. Luisa Carpente & Balbina Casas-Méndez & Ignacio García-Jurado & Anne Nouweland, 2008. "Coalitional Interval Games for Strategic Games in Which Players Cooperate," Theory and Decision, Springer, vol. 65(3), pages 253-269, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsien-Chung Wu, 2018. "Interval-Valued Cores and Interval-Valued Dominance Cores of Cooperative Games Endowed with Interval-Valued Payoffs," Mathematics, MDPI, vol. 6(11), pages 1-26, November.
    2. Chunqiao Tan & Wenrui Feng & Weibin Han, 2020. "On the Banzhaf-like Value for Cooperative Games with Interval Payoffs," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    3. Monroy, L. & Hinojosa, M.A. & Mármol, A.M. & Fernández, F.R., 2013. "Set-valued cooperative games with fuzzy payoffs. The fuzzy assignment game," European Journal of Operational Research, Elsevier, vol. 225(1), pages 85-90.
    4. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.
    5. R. Branzei & S. Gök & O. Branzei, 2011. "Cooperative games under interval uncertainty: on the convexity of the interval undominated cores," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 523-532, December.
    6. André Casajus, 2014. "Collusion, quarrel, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 1-11, February.
    7. R. Branzei & O. Branzei & S. Alparslan Gök & S. Tijs, 2010. "Cooperative interval games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 397-411, September.
    8. Alparslan Gök, S.Z. & Branzei, O. & Branzei, R. & Tijs, S., 2011. "Set-valued solution concepts using interval-type payoffs for interval games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 621-626.
    9. Conrado M. Manuel & Daniel Martín, 2021. "A Monotonic Weighted Banzhaf Value for Voting Games," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
    10. J. Puerto & F. Fernández & Y. Hinojosa, 2008. "Partially ordered cooperative games: extended core and Shapley value," Annals of Operations Research, Springer, vol. 158(1), pages 143-159, February.
    11. Rene (J.R.) van den Brink & Osman Palanci & S. Zeynep Alparslan Gok, 2017. "Interval Solutions for Tu-games," Tinbergen Institute Discussion Papers 17-094/II, Tinbergen Institute.
    12. Suijs, J.P.M. & De Waegenaere, A.M.B. & Borm, P.E.M., 1996. "Stochastic Cooperative Games in Insurance and Reinsurance," Discussion Paper 1996-53, Tilburg University, Center for Economic Research.
    13. Lina Mallozzi & Juan Vidal-Puga, 2021. "Uncertainty in cooperative interval games: how Hurwicz criterion compatibility leads to egalitarianism," Annals of Operations Research, Springer, vol. 301(1), pages 143-159, June.
    14. Donald Nganmegni Njoya & Issofa Moyouwou & Nicolas Gabriel Andjiga, 2021. "The equal-surplus Shapley value for chance-constrained games on finite sample spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 463-499, June.
    15. Ichiro Nishizaki & Tomohiro Hayashida & Shinya Sekizaki & Kojiro Furumi, 2023. "A two-stage linear production planning model with partial cooperation under stochastic demands," Annals of Operations Research, Springer, vol. 320(1), pages 293-324, January.
    16. Fujimoto, Katsushige & Kojadinovic, Ivan & Marichal, Jean-Luc, 2006. "Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices," Games and Economic Behavior, Elsevier, vol. 55(1), pages 72-99, April.
    17. Friedman, Jane & Parker, Cameron, 2018. "The conditional Shapley–Shubik measure for ternary voting games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 379-390.
    18. Barış Bülent Kırlar & Serap Ergün & Sırma Zeynep Alparslan Gök & Gerhard-Wilhelm Weber, 2018. "A game-theoretical and cryptographical approach to crypto-cloud computing and its economical and financial aspects," Annals of Operations Research, Springer, vol. 260(1), pages 217-231, January.
    19. Jian Li & Jian-qiang Wang & Jun-hua Hu, 2019. "Interval-valued n-person cooperative games with satisfactory degree constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1177-1194, December.
    20. Leech, Dennis, 2002. "Power Indices As An Aid To Institutional Design : The Generalised Apportionment Problem," The Warwick Economics Research Paper Series (TWERPS) 648, University of Warwick, Department of Economics.

    More about this item

    Keywords

    Cooperative situations; interval values games; Banzhaf index;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:aucocz:au2013_005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lenka Stastna (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.