IDEAS home Printed from https://ideas.repec.org/a/ete/revbec/20050109.html
   My bibliography  Save this article

Optimal Portfolio Selection for Cash-Flows with Bounded Capital at Risk

Author

Listed:
  • D. Vyncke
  • M. Goovaerts
  • J. Dhaene
  • S. Vanduffel

Abstract

We consider a continuous-time Markowitz type portfolio problem that consists of minimizing the discounted cost of a given cash-fl ow under the constraint of a restricted Capital at Risk. In a Black-Scholes setting, upper and lower bounds are obtained by means of simple analytical expressions that avoid the classical simulation approach for this type of problems. The problem is easily extended to cope with more general discount processes.

Suggested Citation

  • D. Vyncke & M. Goovaerts & J. Dhaene & S. Vanduffel, 2005. "Optimal Portfolio Selection for Cash-Flows with Bounded Capital at Risk," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(1), pages 103-114.
  • Handle: RePEc:ete:revbec:20050109
    as

    Download full text from publisher

    File URL: https://lirias.kuleuven.be/bitstream/123456789/122846/1/TEM_2005-1_10_Vyncke.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    2. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    4. Susanne Emmer & Claudia Klüppelberg & Ralf Korn, 2001. "Optimal Portfolios with Bounded Capital at Risk," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 365-384, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonella Campana, 2007. "On Tail Value-at-Risk for sums of non-independent random variables with a generalized Pareto distribution," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 169-180, December.
    2. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    3. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    4. Bahareh Afhami & Mohsen Rezapour & Mohsen Madadi & Vahed Maroufy, 2021. "Dynamic investment portfolio optimization using a Multivariate Merton Model with Correlated Jump Risk," Papers 2104.11594, arXiv.org.
    5. Brückner, Karsten, 2008. "Quantifying the error of convex order bounds for truncated first moments," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 261-270, February.
    6. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    7. Van Weert, Koen & Dhaene, Jan & Goovaerts, Marc, 2010. "Optimal portfolio selection for general provisioning and terminal wealth problems," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 90-97, August.
    8. Annaert, Jan & Deelstra, Griselda & Heyman, Dries & Vanmaele, Michèle, 2007. "Risk management of a bond portfolio using options," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 299-316, November.
    9. Antonella Campana & Paola Ferretti, 2005. "Distortion Risk Measures and Discrete Risks," Game Theory and Information 0510013, University Library of Munich, Germany.
    10. Alain Chateauneuf & Mina Mostoufi & David Vyncke, 2015. "Comonotonic Monte Carlo and its applications in option pricing and quantification of risk," Documents de travail du Centre d'Economie de la Sorbonne 15015, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Hürlimann, Werner, 2010. "Analytical Pricing of the Unit-Linked Endowment with Guarantees and Periodic Premiums," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 631-653, November.
    12. Valdez, Emiliano A. & Dhaene, Jan & Maj, Mateusz & Vanduffel, Steven, 2009. "Bounds and approximations for sums of dependent log-elliptical random variables," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 385-397, June.
    13. J. Marin-Solano (Universitat de Barcelona) & O. Roch (Universitat de Barcelona) & J. Dhaene (Katholieke Univerisiteit Leuven) & C. Ribas (Universitat de Barcelona) & M. Bosch-Princep (Universitat de B, 2009. "Buy-and-Hold Strategies and Comonotonic Approximations," Working Papers in Economics 213, Universitat de Barcelona. Espai de Recerca en Economia.
    14. Antonella Campana & Paola Ferretti, 2008. "Bounds for Concave Distortion Risk Measures for Sums of Risks," Springer Books, in: Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods in Insurance and Finance, pages 43-51, Springer.
    15. Karel J. in’t Hout & Jacob Snoeijer, 2021. "Numerical Valuation of American Basket Options via Partial Differential Complementarity Problems," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
    16. Karel in 't Hout & Jacob Snoeijer, 2021. "Numerical valuation of American basket options via partial differential complementarity problems," Papers 2106.01200, arXiv.org.
    17. Deelstra, G. & Liinev, J. & Vanmaele, M., 2004. "Pricing of arithmetic basket options by conditioning," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 55-77, February.
    18. Vanmaele, Michele & Deelstra, Griselda & Liinev, Jan, 2004. "Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 343-367, October.
    19. Laeven, Roger J.A. & Goovaerts, Marc J. & Hoedemakers, Tom, 2005. "Some asymptotic results for sums of dependent random variables, with actuarial applications," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 154-172, October.
    20. Landsman, Zinoviy & Pat, Nika & Dhaene, Jan, 2013. "Tail Variance premiums for log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 441-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ete:revbec:20050109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: library EBIB (email available below). General contact details of provider: https://edirc.repec.org/data/fekulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.