IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp505-518.html
   My bibliography  Save this article

The impact of the UK household life-cycle transitions on the electricity and gas usage patterns

Author

Listed:
  • Chalal, Moulay Larbi
  • Benachir, Medjdoub
  • White, Michael
  • Shahtahmassebi, Golnaz
  • Cumberbatch, Miranda
  • Shrahily, Raid

Abstract

The residential sector accounts for approximately 27% and 17% of the world energy consumption and its CO2 emission, respectively. Thus, it is necessary to develop measures to reduce the dioxide emissions in this sector to ensure the sustainable development of the urban environment. However, the majority of existing sustainable measures revolve around improving the thermal quality of the building's envelope with lesser focus on the social and behavioural aspects of energy consumption. For those reasons, our paper aims to address a completely new social aspect of energy sustainability which is household life-cycle transitions. More precisely, we will investigate the impact of UK households transitions from one household type to another (e.g. single to couple) on their energy consumption. To attain this, an official British database, which encompasses around 6000 households observed annually for over 10 years, was analysed using some statistical tests and procedures, including logistic regression. This enabled us to first determine the socioeconomic factors influencing the households’ evolutionary patterns. Subsequently, predict possible future transition patterns for a period of 10 years. Based on that, the impact of the predicted transitions on gas and electricity consumption was enquired. The analysis of main findings has suggested that households transition patterns have a significant impact on their gas and electricity consumption. However, this effect is weak and mostly positive in direction. Finally, we argue that incorporating the powerful concept of household life-cycle transition into urban energy planning will permit the forecasting of residential energy consumption in relation to different household transition patterns. This will in turn assist urban planners in their sustainable energy planning decision-making and enable them to develop appropriate measures.

Suggested Citation

  • Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shahtahmassebi, Golnaz & Cumberbatch, Miranda & Shrahily, Raid, 2017. "The impact of the UK household life-cycle transitions on the electricity and gas usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 505-518.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:505-518
    DOI: 10.1016/j.rser.2017.05.222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leahy, Eimear & Lyons, Sean, 2010. "Energy use and appliance ownership in Ireland," Energy Policy, Elsevier, vol. 38(8), pages 4265-4279, August.
    2. Tso, Geoffrey K.F. & Guan, Jingjing, 2014. "A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption," Energy, Elsevier, vol. 66(C), pages 722-731.
    3. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    4. Meier, Helena & Rehdanz, Katrin, 2010. "Determinants of residential space heating expenditures in Great Britain," Energy Economics, Elsevier, vol. 32(5), pages 949-959, September.
    5. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    6. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    7. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    8. Schröder, Carsten & Rehdanz, Katrin & Narita, Daiju & Okubo, Toshihiro, 2015. "The decline in average family size and its implications for the average benefits of within‐household sharing," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 67(3), pages 760-780.
    9. Mills, Bradford F. & Schleich, Joachim, 2010. "Why don't households see the light?: Explaining the diffusion of compact fluorescent lamps," Resource and Energy Economics, Elsevier, vol. 32(3), pages 363-378, August.
    10. Wiesmann, Daniel & Lima Azevedo, Inês & Ferrão, Paulo & Fernández, John E., 2011. "Residential electricity consumption in Portugal: Findings from top-down and bottom-up models," Energy Policy, Elsevier, vol. 39(5), pages 2772-2779, May.
    11. Burholt, Vanessa & Windle, Gill, 2006. "Keeping warm? Self-reported housing and home energy efficiency factors impacting on older people heating homes in North Wales," Energy Policy, Elsevier, vol. 34(10), pages 1198-1208, July.
    12. Carter, Adrian & Craigwell, Roland & Moore, Winston, 2012. "Price reform and household demand for electricity," Journal of Policy Modeling, Elsevier, vol. 34(2), pages 242-252.
    13. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    14. Raul Jimenez & Ariel Yépez-García, 2016. "Composition and Sensitivity of Residential Energy Consumption," IDB Publications (Working Papers) 95257, Inter-American Development Bank.
    15. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    16. Van Raaij, W. Fred & Verhallen, Theo M. M., 1983. "A behavioral model of residential energy use," Journal of Economic Psychology, Elsevier, vol. 3(1), pages 39-63.
    17. Wyatt, Peter, 2013. "A dwelling-level investigation into the physical and socio-economic drivers of domestic energy consumption in England," Energy Policy, Elsevier, vol. 60(C), pages 540-549.
    18. Elisha R. Frederiks & Karen Stenner & Elizabeth V. Hobman, 2015. "The Socio-Demographic and Psychological Predictors of Residential Energy Consumption: A Comprehensive Review," Energies, MDPI, vol. 8(1), pages 1-37, January.
    19. Mansouri, Iman & Newborough, Marcus & Probert, Douglas, 1996. "Energy consumption in UK households: Impact of domestic electrical appliances," Applied Energy, Elsevier, vol. 54(3), pages 211-285, July.
    20. Jimenez Mori, Raul Alberto & Yépez-García, Ariel, 2016. "Composition and Sensitivity of Residential Energy Consumption," IDB Publications (Working Papers) 7798, Inter-American Development Bank.
    21. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    22. Tiwari, Piyush, 2000. "Architectural, Demographic, and Economic Causes of Electricity Consumption in Bombay," Journal of Policy Modeling, Elsevier, vol. 22(1), pages 81-98, January.
    23. Harold, Jason & Lyons, Seán & Cullinan, John, 2015. "The determinants of residential gas demand in Ireland," Energy Economics, Elsevier, vol. 51(C), pages 475-483.
    24. Longhi, Simonetta, 2014. "Residential energy use and the relevance of changes in household circumstances," ISER Working Paper Series 2014-22, Institute for Social and Economic Research.
    25. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fateh Belaïd & Christophe Rault & Camille Massié, 2022. "A life-cycle theory analysis of French household electricity demand," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 501-530, April.
    2. Pereira, Diogo Santos & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Are renewables affecting income distribution and increasing the risk of household poverty?," Energy, Elsevier, vol. 170(C), pages 791-803.
    3. Hidayati Ramli & Zahirah Mokhtar Azizi & Niraj Thurairajah, 2024. "Sustainable Smart City Technologies and Their Impact on Users’ Energy Consumption Behaviour," Energies, MDPI, vol. 17(4), pages 1-28, February.
    4. Fateh Belaïd & Christophe Rault & Camille Massié, 2021. "A Life-Cycle Analysis of French Household Electricity Demand," CESifo Working Paper Series 8814, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    2. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    3. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
    4. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.
    5. Boukarta Soufiane & Berezowska-Azzag Ewa, 2018. "Assessing Households’ Gas and Electricity Consumption: A Case Study of Djelfa, Algeria," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 111-129, December.
    6. Kettani, Maryème & Sanin, Maria Eugenia, 2024. "Energy consumption and energy poverty in Morocco," Energy Policy, Elsevier, vol. 185(C).
    7. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    8. Besagni, Giorgio & Borgarello, Marco, 2018. "The determinants of residential energy expenditure in Italy," Energy, Elsevier, vol. 165(PA), pages 369-386.
    9. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    10. Yarbaşı, İkram Yusuf & Çelik, Ali Kemal, 2023. "The determinants of household electricity demand in Turkey: An implementation of the Heckman Sample Selection model," Energy, Elsevier, vol. 283(C).
    11. Michael Chesser & Jim Hanly & Damien Cassells & Nikolaos Apergis, 2019. "Household Energy Consumption: A Study of Micro Renewable Energy Systems in Ireland," The Economic and Social Review, Economic and Social Studies, vol. 50(2), pages 265-280.
    12. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    13. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    14. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
    15. Baldini, Mattia & Trivella, Alessio & Wente, Jordan William, 2018. "The impact of socioeconomic and behavioural factors for purchasing energy efficient household appliances: A case study for Denmark," Energy Policy, Elsevier, vol. 120(C), pages 503-513.
    16. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
    17. Jean Gaston Tamba & Flavian Emmanuel Sapnken & Tchitchile Wilfried Emmanuel Azong & Serge Guefano & Armand Fopah Lele & Louis Monkam, 2022. "An Overview of Electricity in Cameroon: Current Status, Influential Factors and Government Actions," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 470-481, July.
    18. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    19. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    20. Fateh Belaïd & Christophe Rault & Camille Massié, 2022. "A life-cycle theory analysis of French household electricity demand," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 501-530, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:505-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.