IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxviy2023i1p595-611.html
   My bibliography  Save this article

Identification of Navigational Risks Associated with Wind Farms

Author

Listed:
  • Krzysztof Marcjan
  • Diana Kotkowska

Abstract

Purpose: This paper analyses navigational hazards associated with vessel traffic around wind farms. Monitoring ship movements in the area of an offshore wind farm has a significant impact on the safety not only of the wind farm itself, but also on the safety of navigation. The study investigated the monitoring of ship traffic in the area of the Southern Baltic Sea in the region of planned wind farms to identify risks associated with new offshore renewable energy projects. Design/Methodology/Approach: The analysis of hazards and their consequences in the study area was carried out using the risk matrix method. The study was based on AIS data from the years 2021, 2020 and 2019, related to the area of the planned project and adjacent areas. Risk identification and analysis was performed for the three life stages of the wind farm: construction, operation and decommissioning. Findings: Based on the research and analysis of extensive information on the traffic of vessels including various vessel types and functions, the authors have made an in-depth analysis of maritime safety around planned investment projects related to the construction of renewable energy sources along the Polish coast. The results made it possible to identify factors affecting navigational safety, as well as to analyse the risks associated with vessel traffic in the vicinity of planned wind farms. Practical Implications: The results obtained in the study allow the estimation of navigational safety in the region around wind farms in the Southern Baltic Sea. Originality/Value: Numerous investments in renewable energy sources such as offshore wind farms are planned along the Polish coast in the years to come. Investing in offshore wind energy ideally addresses Europe's current energy problems and European projects, which include the need to replace coal-fired power stations with much more environmentally friendly sources of renewable energy. An essential factor in planning such future investments is navigational safety in the vicinity of these facilities. This analysis is a new approach to identifying the various risks associated with the construction of wind farms.

Suggested Citation

  • Krzysztof Marcjan & Diana Kotkowska, 2023. "Identification of Navigational Risks Associated with Wind Farms," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 595-611.
  • Handle: RePEc:ers:journl:v:xxvi:y:2023:i:1:p:595-611
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/3134/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uflaz, Esma & Sezer, Sukru Ilke & Tunçel, Ahmet Lutfi & Aydin, Muhammet & Akyuz, Emre & Arslan, Ozcan, 2024. "Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    4. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Goerlandt, Floris & Islam, Samsul, 2021. "A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Silveira, P. & Teixeira, A.P. & Figueira, J.R. & Guedes Soares, C., 2021. "A multicriteria outranking approach for ship collision risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Xiaoyuan Zhao & Haiwen Yuan & Qing Yu, 2021. "Autonomous Vessels in the Yangtze River: A Study on the Maritime Accidents Using Data-Driven Bayesian Networks," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    10. Xu, Sheng & Kim, Ekaterina & Haugen, Stein & Zhang, Mingyang, 2022. "A Bayesian network risk model for predicting ship besetting in ice during convoy operations along the Northern Sea Route," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Yu, Qing & Liu, Kezhong & Yang, Zhisen & Wang, Hongbo & Yang, Zaili, 2021. "Geometrical risk evaluation of the collisions between ships and offshore installations using rule-based Bayesian reasoning," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    12. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    13. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Elidolu, Gizem & Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan & Arslanoglu, Yasin, 2023. "Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended Evidential Reasoning (ER) and Rule-based Bayesian Network (RBN) approach," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Xin, Xuri & Liu, Kezhong & Yang, Zaili & Zhang, Jinfen & Wu, Xiaolie, 2021. "A probabilistic risk approach for the collision detection of multi-ships under spatiotemporal movement uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Weigell, Jürgen & Jahn, Carlos, 2022. "Assessing offshore wind farm collision risks using AIS data: An overview," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 499-521, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxvi:y:2023:i:1:p:595-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.