IDEAS home Printed from https://ideas.repec.org/p/ags/ndtr12/207080.html
   My bibliography  Save this paper

The Transportation Emission Impact of the Biomass Feedstock Traffic of A Potential Commercial-Scale Biorefinery in East Tennessee

Author

Listed:
  • Yu, Edward T.
  • Fu, Joshua S.
  • Larson, James A.
  • English, Burton C.
  • De La Torre Ugarte, Daniel
  • Wilson, Bradly
  • Yun, Jeongran
  • Gao, Yuan
  • Calcagno, Jimmy

Abstract

The logistics required to supply biomass feedstock a refinery is crucial to the development of the cellulosic biofuel industry because of the importance of the quality and quantity and bulky nature associated with cellulosic feedstock to the biofuel conversion process. In addition, the potential social and environmental impact of biomass feedstock transportation has also received increasing attention due to the expansion of truck traffic on the current road system. This study applies a spatial-oriented mixed-integer mathematical programming model linked to a GIS resource model to generate a least cost solution of a typical feedstock harvest and logistic system for a potential biorefinery with the capacity of 50 million gallons per year. Moreover, U.S. EPA’s MOVES2010a was used to estimate the baseline emissions for 2010 with national scale option in study region and additional emissions generated from hauling those feedstock with project scale option. Results showed that the transportation cost accounted for nearly one-quarter of total plant gate costs of the large round bales. Also, it was estimated that the biorefinery received about 50,000 truckloads per year, hence creating annually 100,000 truck trips (or 274 truck trips per day) on the road linking the entrance of the biorefinery to the supply regions. The overall VMT increase resulting from additional feedstock truck traffics was 3.7 million miles and the emissions of NOX, CO2, PM10, and PM2.5 emissions increased by 0.32%, 0.13%, 0.60%, and 0.71%, respectively, in these 13 counties studied when comparing with the overall baseline emissions.

Suggested Citation

  • Yu, Edward T. & Fu, Joshua S. & Larson, James A. & English, Burton C. & De La Torre Ugarte, Daniel & Wilson, Bradly & Yun, Jeongran & Gao, Yuan & Calcagno, Jimmy, 2012. "The Transportation Emission Impact of the Biomass Feedstock Traffic of A Potential Commercial-Scale Biorefinery in East Tennessee," 53rd Annual Transportation Research Forum, Tampa, Florida, March 15-17, 2012 207080, Transportation Research Forum.
  • Handle: RePEc:ags:ndtr12:207080
    DOI: 10.22004/ag.econ.207080
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/207080/files/2012_29_Trans_Emission_Biorefinary_EastTN.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.207080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James A. Larson & Tun‐Hsiang Yu & Burton C. English & Daniel F. Mooney & Chenguang Wang, 2010. "Cost evaluation of alternative switchgrass producing, harvesting, storing, and transporting systems and their logistics in the Southeastern USA," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 70(2), pages 184-200, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cahill, Nathanial & Popp, Michael & West, Charles & Rocateli, Alexandre & Ashworth, Amanda & Farris, Rodney & Dixon, Bruce, 2014. "Switchgrass Harvest Time Effects on Nutrient Use and Yield: An Economic Analysis," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 46(4), pages 487-507, November.
    2. Chugh, Shikha & Yu, T. Edward & Jackson, Samuel & Larson, James & English, Burton & Cho, Seong-Hoon, 2015. "Exploring the Potential to Penetrate the Energy Markets for Tennessee-Produced Switchgrass," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196899, Southern Agricultural Economics Association.
    3. Zhong, Jia & Yu, T. Edward & Larson, James A. & English, Burton C. & Fu, Joshua S. & Calcagno, James, 2016. "Analysis of environmental and economic tradeoffs in switchgrass supply chains for biofuel production," Energy, Elsevier, vol. 107(C), pages 791-803.
    4. Yu, T. Edward & Wang, Zidong & English, Burton C. & Larson, James A., 2014. "Designing a Dedicated Energy Crop Supply System in Tennessee: A Multiobjective Optimization Analysis," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 46(3), pages 357-373, August.
    5. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    6. Seyed Ali Haji Esmaeili & Ahmad Sobhani & Sajad Ebrahimi & Joseph Szmerekovsky & Alan Dybing & Amin Keramati, 2023. "Location Allocation of Biorefineries for a Switchgrass-Based Bioethanol Supply Chain Using Energy Consumption and Emissions," Logistics, MDPI, vol. 7(1), pages 1-22, January.
    7. Olli-Jussi Korpinen & Mika Aalto & Raghu KC & Timo Tokola & Tapio Ranta, 2023. "Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review," Energies, MDPI, vol. 16(2), pages 1-23, January.
    8. Gouzaye, Amadou & Epplin, Francis M., 2016. "Land requirements, feedstock haul distance, and expected profit response to land use restrictions for switchgrass production," Energy Economics, Elsevier, vol. 58(C), pages 59-66.
    9. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Zhou, Xia “Vivian” & Clark, Christopher D. & Lambert, Dayton M. & English, Burton C. & Larson, James A. & Boyer, Christopher N., 2015. "Biomass supply and nutrient runoff abatement under alternative biofuel feedstock production subsidies," Agricultural Systems, Elsevier, vol. 139(C), pages 250-259.
    11. He-Lambert, Lixia & English, Burton C. & Lambert, Dayton M. & Shylo, Oleg & Larson, James A. & Yu, T. Edward & Wilson, Bradly, 2018. "Determining a geographic high resolution supply chain network for a large scale biofuel industry," Applied Energy, Elsevier, vol. 218(C), pages 266-281.
    12. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    13. Okwo, Adaora & Thomas, Valerie M., 2014. "Biomass feedstock contracts: Role of land quality and yield variability in near term feasibility," Energy Economics, Elsevier, vol. 42(C), pages 67-80.
    14. Larson, James A. & Yu, T. Edward & English, Burton C. & Jensen, Kimberly L. & Gao, Yuan & Wang, Chenguang, 2015. "Effect of outdoor storage losses on feedstock inventory management and plant-gate cost for a switchgrass conversion facility in East Tennessee," Renewable Energy, Elsevier, vol. 74(C), pages 803-814.
    15. Bansal, Ankit & Illukpitiya, Prabodh & Singh, Surendra P. & Tegegne, Fisseha, 2013. "Economic competitiveness of ethanol production from cellulosic feedstock in Tennessee," Renewable Energy, Elsevier, vol. 59(C), pages 53-57.
    16. Albashabsheh, Nibal T. & Heier Stamm, Jessica L., 2019. "Optimization of lignocellulosic biomass-to-biofuel supply chains with mobile pelleting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 545-562.
    17. Maria F. Aranguren & Krystel K. Castillo-Villar & Mario Aboytes-Ojeda & Marcio H. Giacomoni, 2018. "Simulation-Optimization Approach for the Logistics Network Design of Biomass Co-Firing with Coal at Power Plants," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    18. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    19. Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph & Dybing, Alan & Pourhashem, Ghasideh, 2020. "First-generation vs. second-generation: A market incentives analysis for bioethanol supply chains with carbon policies," Applied Energy, Elsevier, vol. 277(C).
    20. Sharma, Bijay P. & Yu, T. Edward & English, Burton C. & Boyer, Christopher N. & Larson, James A., 2020. "Impact of government subsidies on a cellulosic biofuel sector with diverse risk preferences toward feedstock uncertainty," Energy Policy, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ndtr12:207080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.trforum.org/journal/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.