IDEAS home Printed from https://ideas.repec.org/a/ejn/ejefjr/v5y2017i4p16-35.html
   My bibliography  Save this article

Future Fossil Fuel Price Impacts on NDC Achievement; Estimation of GHG Emissions and Mitigation Costs

Author

Listed:
  • Yosuke Arino

    (Research Institute of Innovative Technology for the Earth (RITE), Japan)

  • Fuminori Sano

    (Research Institute of Innovative Technology for the Earth (RITE), Japan)

  • Keigo Akimoto

    (Research Institute of Innovative Technology for the Earth (RITE), Japan)

Abstract

The Shale Revolution in the US, a supply-side innovation in oil and gas production, has been dramatically changing the world’s fossil fuel energy markets – leading to a decrease in oil, gas and coal prices. Some projections suggest that low fossil fuel prices might continue at least over the next few decades. Uncertainty in fossil fuel prices might affect the levels of emission reductions expected from submitted nationally determined contributions (NDCs) and/or influence the difficulty of achieving the NDCs. This paper evaluated the impact of different (high, medium, and low) fossil fuel prices, sustained through to 2050, on worldwide GHG emissions reductions and associated costs (mainly marginal abatement costs (MACs)). Total global GHG emissions were estimated to be 57.5-61.5 GtCO2eq by 2030, with the range shown reflecting uncertainties about fossil fuel prices and the target levels of several NDCs (i.e., whether their upper or lower targets were adopted). It was found that lower fuel prices not only diminished the environmental effectiveness of global NDCs but also widened regional differences of marginal and total abatement costs, thereby generating more room for carbon leakage. One possible policy direction in terms of abatement efficiency, fairness and environmental effectiveness would be to require countries with low marginal and total abatement costs but having a major influence on global GHG emissions (such as China and India) to increase their mitigation efforts, especially in a low-fuel-price world.

Suggested Citation

  • Yosuke Arino & Fuminori Sano & Keigo Akimoto, 2017. "Future Fossil Fuel Price Impacts on NDC Achievement; Estimation of GHG Emissions and Mitigation Costs," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 5(4), pages 16-35.
  • Handle: RePEc:ejn:ejefjr:v:5:y:2017:i:4:p:16-35
    as

    Download full text from publisher

    File URL: https://eurasianpublications.com/wp-content/uploads/2021/02/EJEF-5.4.2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rout, Ullash K. & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi & Tomoda, Toshimasa, 2008. "Impact assessment of the increase in fossil fuel prices on the global energy system, with and without CO2 concentration stabilization," Energy Policy, Elsevier, vol. 36(9), pages 3477-3484, September.
    2. Joseph Aldy & William Pizer & Massimo Tavoni & Lara Aleluia Reis & Keigo Akimoto & Geoffrey Blanford & Carlo Carraro & Leon E. Clarke & James Edmonds & Gokul C. Iyer & Haewon C. McJeon & Richard Riche, 2016. "Economic tools to promote transparency and comparability in the Paris Agreement," Nature Climate Change, Nature, vol. 6(11), pages 1000-1004, November.
    3. David L. McCollum & Jessica Jewell & Volker Krey & Morgan Bazilian & Marianne Fay & Keywan Riahi, 2016. "Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets and carbon emissions," Nature Energy, Nature, vol. 1(7), pages 1-8, July.
    4. Keigo Akimoto & Fuminori Sano & Bianka Shoai Tehrani, 2017. "The analyses on the economic costs for achieving the nationally determined contributions and the expected global emission pathways," Evolutionary and Institutional Economics Review, Springer, vol. 14(1), pages 193-206, June.
    5. Yann Robiou du Pont & M. Louise Jeffery & Johannes Gütschow & Joeri Rogelj & Peter Christoff & Malte Meinshausen, 2017. "Correction: Corrigendum: Equitable mitigation to achieve the Paris Agreement goals," Nature Climate Change, Nature, vol. 7(2), pages 153-153, February.
    6. Laurent Drouet, 2016. "Cheap oil slows climate mitigation," Nature Climate Change, Nature, vol. 6(7), pages 660-661, July.
    7. Yann Robiou du Pont & M. Louise Jeffery & Johannes Gütschow & Joeri Rogelj & Peter Christoff & Malte Meinshausen, 2017. "Equitable mitigation to achieve the Paris Agreement goals," Nature Climate Change, Nature, vol. 7(1), pages 38-43, January.
    8. Akimoto, Keigo & Sano, Fuminori & Homma, Takashi & Oda, Junichiro & Nagashima, Miyuki & Kii, Masanobu, 2010. "Estimates of GHG emission reduction potential by country, sector, and cost," Energy Policy, Elsevier, vol. 38(7), pages 3384-3393, July.
    9. Narayan, Paresh Kumar & Sharma, Susan & Poon, Wai Ching & Westerlund, Joakim, 2014. "Do oil prices predict economic growth? New global evidence," Energy Economics, Elsevier, vol. 41(C), pages 137-146.
    10. Narayan, Paresh Kumar & Saboori, Behnaz & Soleymani, Abdorreza, 2016. "Economic growth and carbon emissions," Economic Modelling, Elsevier, vol. 53(C), pages 388-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).
    2. Khabbazan, Mohammad M. & von Hirschhausen, Christian, 2021. "The implication of the Paris targets for the Middle East through different cooperation options," Energy Economics, Elsevier, vol. 104(C).
    3. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Mauricio Marrone & Martina K Linnenluecke, 2020. "Interdisciplinary Research Maps: A new technique for visualizing research topics," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
    5. Kakeu, Johnson & Agbo, Maxime, 2022. "International transfer to reduce global inequality and transboundary pollution," Energy Economics, Elsevier, vol. 114(C).
    6. Thomas Hahn & Johannes Morfeldt & Robert Höglund & Mikael Karlsson & Ingo Fetzer, 2024. "Estimating countries’ additional carbon accountability for closing the mitigation gap based on past and future emissions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Karl W. Steininger & Keith Williges & Lukas H. Meyer & Florian Maczek & Keywan Riahi, 2022. "Sharing the effort of the European Green Deal among countries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    10. Tan, Xianchun & Cai, Xiaoli & Cheng, Yonglong & Yan, Hongshuo, 2024. "How to control China's total amount of carbon emissions? An analysis of provincial allowance demands," Energy, Elsevier, vol. 303(C).
    11. Salekpay, Foroogh, 2021. "Distributing the European Union Greenhouse Gas emission 2030," Working Papers 2072/534909, Universitat Rovira i Virgili, Department of Economics.
    12. Marian Leimbach & Nico Bauer, 2022. "Capital markets and the costs of climate policies," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(3), pages 397-420, July.
    13. Hongtao Ren & Wenji Zhou & Hangzhou Wang & Bo Zhang & Tieju Ma, 2022. "An energy system optimization model accounting for the interrelations of multiple stochastic energy prices," Annals of Operations Research, Springer, vol. 316(1), pages 555-579, September.
    14. Zhao, Chuandang & Wang, Fengjuan, 2024. "Economy-equity equilibrium based bi-level provincial renewable portfolio standard target allocation: Perspective from China," Energy, Elsevier, vol. 290(C).
    15. Michel G. J. Elzen & Ioannis Dafnomilis & Nicklas Forsell & Panagiotis Fragkos & Kostas Fragkiadakis & Niklas Höhne & Takeshi Kuramochi & Leonardo Nascimento & Mark Roelfsema & Heleen Soest & Frank Sp, 2022. "Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-29, August.
    16. Dobkowitz, Sonja, 2024. "Meeting Climate Targets: The role of fossil research subsidies," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302410, Verein für Socialpolitik / German Economic Association.
    17. Athanasoglou, Stergios, 2022. "On the existence of efficient, individually rational, and fair environmental agreements," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    18. Reyseliani, Nadhilah & Hidayatno, Akhmad & Purwanto, Widodo Wahyu, 2022. "Implication of the Paris agreement target on Indonesia electricity sector transition to 2050 using TIMES model," Energy Policy, Elsevier, vol. 169(C).
    19. Carè, R. & Weber, O., 2023. "How much finance is in climate finance? A bibliometric review, critiques, and future research directions," Research in International Business and Finance, Elsevier, vol. 64(C).
    20. Ding, Qingguo & Wang, Jianxiao & Zhang, Bing & Yu, Yang, 2023. "Economic burden of China's fairness regulations on power generation sector," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ejn:ejefjr:v:5:y:2017:i:4:p:16-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Esra Barakli (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.