IDEAS home Printed from https://ideas.repec.org/a/ega/rafega/200909.html
   My bibliography  Save this article

Price volatility forecasts for agricultural commodities: an application of volatility models, option implieds and composite approaches forfutures prices of corn and wheat

Author

Listed:
  • Guillermo Benavides Perales

    (Banco de México y Tecnológico de Monterrey)

Abstract

There has been substantial research effort aimed to forecast futures price return volatilities of financial and commodity assets. Some part of this research focuses on the performance of time-series models (in particular ARCH models) versus option implied volatility models. A significant part of the literature related to this topic shows that volatility forecast accuracy is not easy to estimate regardless of the forecasting model applied. This paper examines the volatility accuracy of volatility forecast models for the case of corn and wheat futures price returns. The models applied here are a univariate GARCH, a multivariate ARCH (the BEKK model), an option implied and a composite forecast model. The composite model includes time-series (historical) and option implied volatility forecasts. The results show that the option implied model is superior to the historical models in terms of accuracy and that the composite forecast model was the most accurate one (compared to the alternative models) having the lowest mean-square-errors. Given these findings it is recommended to use a composite forecast model if both types of data are available i.e. the time-series (historical) and the option implied. In addition, the results of this paper are consistent to that part of the literature that emphasizes the difficulty on being accurate about forecasting asset price return volatility. This is because the explanatory power (coefficient of determination) calculated in the forecast regressions were relatively low

Suggested Citation

  • Guillermo Benavides Perales, 2009. "Price volatility forecasts for agricultural commodities: an application of volatility models, option implieds and composite approaches forfutures prices of corn and wheat," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 3(2), pages 40-59.
  • Handle: RePEc:ega:rafega:200909
    as

    Download full text from publisher

    File URL: http://alejandria.ccm.itesm.mx/egap/documentos/2009V3A9Benavides.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    4. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, September.
    5. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    6. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    7. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    8. Fang, Yue, 2003. "Forecasting combination and encompassing tests," International Journal of Forecasting, Elsevier, vol. 19(1), pages 87-94.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    11. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    12. Engle, Robert F, 2000. "Dynamic Conditional Correlation - A Simple Class of Multivariate GARCH Models," University of California at San Diego, Economics Working Paper Series qt56j4143f, Department of Economics, UC San Diego.
    13. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villalba Padilla, Fátima Irina & Flores-Ortega, Miguel, 2014. "Análisis de la volatilidad del índice principal del mercado bursátil mexicano, del índice de riesgo país y de la mezcla mexicana de exportación mediante un modelo GARCH trivariado asimétrico || Volati," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 17(1), pages 3-22, June.
    2. Guillermo Benavides, 2010. "Forecasting Short-Run Inflation Volatility using Futures Prices: An Empirical Analysis from a Value at Risk Perspective," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 4(2), pages 1-27.
    3. Guillermo Benavides, 2021. "Asymmetric Volatility Relevance in Risk Management: An Empirical Analysis using Stock Index Futures," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(TNEA), pages 1-18, Septiembr.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benavides Guillermo, 2006. "Volatility Forecasts for the Mexican Peso - U.S. Dollar Exchange Rate: An Empirical Analysis of Garch, Option Implied and Composite Forecast Models," Working Papers 2006-04, Banco de México.
    2. Benavides, Guillermo, 2009. "Predictive Accuracy of Futures Options Implied Volatility: the Case of the Exchange Rate Futures Mexican Peso-Us Dollar," Panorama Económico, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(09), pages 55-95, segundo s.
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    8. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    9. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    10. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    11. Choudhry, Taufiq, 2004. "The hedging effectiveness of constant and time-varying hedge ratios using three Pacific Basin stock futures," International Review of Economics & Finance, Elsevier, vol. 13(4), pages 371-385.
    12. Choudhry, Taufiq, 2003. "Short-run deviations and optimal hedge ratio: evidence from stock futures," Journal of Multinational Financial Management, Elsevier, vol. 13(2), pages 171-192, April.
    13. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    14. Guillermo Benavides & Isela Elizabeth Téllez-León & Francisco Venegas-Martínez, 2015. "Effects of Volatility of the Exchange Rate on Inflation Expectations and Growth Prospects in Mexico (2002-2014)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 63-78, November.
    15. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    16. Mark R. Manfredo & Dwight R. Sanders, 2004. "The forecasting performance of implied volatility from live cattle options contracts: Implications for agribusiness risk management," Agribusiness, John Wiley & Sons, Ltd., vol. 20(2), pages 217-230.
    17. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    19. Zhang, Feng, 2007. "An application of vector GARCH model in semiconductor demand planning," European Journal of Operational Research, Elsevier, vol. 181(1), pages 288-297, August.
    20. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.

    More about this item

    Keywords

    Agricultural commodities; BEKK model; multivariate GARCH; Samuelson hypothesis; theory of storage;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q13 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Markets and Marketing; Cooperatives; Agribusiness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ega:rafega:200909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: José Antonio Núñez (email available below). General contact details of provider: https://edirc.repec.org/data/emitemx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.