IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt56j4143f.html
   My bibliography  Save this paper

Dynamic Conditional Correlation - A Simple Class of Multivariate GARCH Models

Author

Listed:
  • Engle, Robert F

Abstract

Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of returns. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled with parsimonious parametric models for the correlations. They are not linear but can often be estimated very simply with univariate or two step methods based on the likelihood function. It is shown that they perform well in a variety of situations and give sensible empirical results.

Suggested Citation

  • Engle, Robert F, 2000. "Dynamic Conditional Correlation - A Simple Class of Multivariate GARCH Models," University of California at San Diego, Economics Working Paper Series qt56j4143f, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt56j4143f
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/56j4143f.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    2. Jonas Mockus, 2010. "On simulation of optimal strategies and Nash equilibrium in the financial market context," Journal of Global Optimization, Springer, vol. 48(1), pages 129-143, September.
    3. Xu, Haifeng & Hamori, Shigeyuki, 2012. "Dynamic linkages of stock prices between the BRICs and the United States: Effects of the 2008–09 financial crisis," Journal of Asian Economics, Elsevier, vol. 23(4), pages 344-352.
    4. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    5. Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
    6. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    7. Ito, Akitoshi, 1999. "Profits on technical trading rules and time-varying expected returns: evidence from Pacific-Basin equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 7(3-4), pages 283-330, August.
    8. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    9. Zeynel Abidin Ozdemir, 2010. "Dynamics Of Inflation, Output Growth And Their Uncertainty In The Uk: An Empirical Analysis," Manchester School, University of Manchester, vol. 78(6), pages 511-537, December.
    10. He, Hui & Yang, Jiawen, 2011. "Regime-switching analysis of ADR home market pass-through," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 204-214, January.
    11. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    12. Fu Qiao & Yan Yan, 2020. "A Demand-Oriented Industry-Specific Volatility Spillover Network Analysis of China’s Stock Market around the Outbreak of COVID-19," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(11), pages 1321-1341, November.
    13. Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
    14. Lucchetti, Riccardo & Palomba, Giulio, 2009. "Nonlinear adjustment in US bond yields: An empirical model with conditional heteroskedasticity," Economic Modelling, Elsevier, vol. 26(3), pages 659-667, May.
    15. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    16. Kearney, Colm & Muckley, Cal, 2008. "Can the traditional Asian US dollar peg exchange rate regime be extended to include the Japanese yen?," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 870-885, December.
    17. Nakatani, Tomoaki & Teräsvirta, Timo, 2008. "Positivity constraints on the conditional variances in the family of conditional correlation GARCH models," Finance Research Letters, Elsevier, vol. 5(2), pages 88-95, June.
    18. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    19. Chang, C-L. & McAleer, M.J. & Wang, Y-A., 2018. "Latent Volatility Granger Causality and Spillovers in Renewable Energy and Crude Oil ETFs," Econometric Institute Research Papers TI 2018-052/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Damian S. Damianov & Diego Escobari, 2021. "Getting on and Moving Up the Property Ladder: Real Hedging in the U.S. Housing Market Before and After the Crisis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1201-1237, December.

    More about this item

    Keywords

    GARCH; dynamic conditional correlation;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt56j4143f. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.