IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v72y2018icp180-186.html
   My bibliography  Save this article

Socio-demographic characteristics, psychological factors and knowledge related to electric car use: A comparison between electric and conventional car drivers

Author

Listed:
  • Simsekoglu, Özlem

Abstract

Increasing number of drivers are using electric cars either as their main or additional car. It is important to make a distinction between sole electric car drivers and drivers of both an electric and a conventional car to understand whether determinants of electric car use differ across these sub-groups. The main aim of the present study was to make comparisons among owners of sole electric car, both electric and conventional cars, and sole conventional car for demographic characteristics, travel mode use, psychological factors and knowledge related to electric car use in a Norwegian sample of car drivers. In addition, factors that predict type of car/s (electric, conventional or both electric and conventional) owned by the drivers were investigated. An online survey, with a response rate of 11%, was used to collect data from 663 Norwegian car drivers including both electric and conventional car drivers. The MANCOVA results showed that the most substantial differences in the measured constructs were between the sole electric car owners and the sole conventional car owners, whereas there were fewer differences between those who only own an electric car and those who own both an electric and a conventional car. Compared to the conventional car owners, electric car owners were younger and had a higher education and income level, and they reported more car use and higher level of knowledge about electric cars. In addition, electric car owners agreed with the positive attributes of electric cars more and reported higher level of personal norm, ascription of responsibility and awareness of consequences related to effects of car use to the environment. Finally, multinomial logistic regression results showed that attributes of electric cars were the strongest group of variables that increased probability of electric car ownership.

Suggested Citation

  • Simsekoglu, Özlem, 2018. "Socio-demographic characteristics, psychological factors and knowledge related to electric car use: A comparison between electric and conventional car drivers," Transport Policy, Elsevier, vol. 72(C), pages 180-186.
  • Handle: RePEc:eee:trapol:v:72:y:2018:i:c:p:180-186
    DOI: 10.1016/j.tranpol.2018.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17303852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Plötz, Patrick & Schneider, Uta & Globisch, Joachim & Dütschke, Elisabeth, 2014. "Who will buy electric vehicles? Identifying early adopters in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 96-109.
    2. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Youlin & Qian, Lixian & Tyfield, David & Soopramanien, Didier, 2021. "On the heterogeneity in consumer preferences for electric vehicles across generations and cities in China," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Giansoldati, Marco & Rotaris, Lucia & Scorrano, Mariangela & Danielis, Romeo, 2020. "Does electric car knowledge influence car choice? Evidence from a hybrid choice model," Research in Transportation Economics, Elsevier, vol. 80(C).
    3. Baresch, Martin & Moser, Simon, 2019. "Allocation of e-car charging: Assessing the utilization of charging infrastructures by location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 388-395.
    4. Hasan, Saiful & Simsekoglu, Özlem, 2020. "The role of psychological factors on vehicle kilometer travelled (VKT) for battery electric vehicle (BEV) users," Research in Transportation Economics, Elsevier, vol. 82(C).
    5. Saiful Hasan & Terje Andreas Mathisen, 2020. "Policy measures for electric vehicle adoption. A review of evidence from Norway and China," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 25-46.
    6. Silvia Tomasi & Alyona Zubaryeva & Cesare Pizzirani & Margherita Dal Col & Jessica Balest, 2021. "Propensity to Choose Electric Vehicles in Cross-Border Alpine Regions," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    7. Tanţău Adrian & Gavrilescu Ileana, 2019. "Key anxiety factors for buying an electric vehicle," Management & Marketing, Sciendo, vol. 14(2), pages 240-248, June.
    8. Mehdizadeh, Milad & Zavareh, Mohsen Fallah & Nordfjaern, Trond, 2019. "Mono- and multimodal green transport use on university trips during winter and summer: Hybrid choice models on the norm-activation theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 317-332.
    9. Curtis, John & Brazil, William & Harold, Jason, 2019. "Understanding preference heterogeneity in electricity services: the case of domestic appliance curtailment contracts," Papers WP638, Economic and Social Research Institute (ESRI).
    10. Edward Simpson & David Bradley & John Palfreyman & Roger White, 2022. "Sustainable Society: Wellbeing and Technology—3 Case Studies in Decision Making," Sustainability, MDPI, vol. 14(20), pages 1-30, October.
    11. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    12. Squalli, Jay, 2024. "Environmental hypocrisy? Electric and hybrid vehicle adoption and pro-environmental attitudes in the United States," Energy, Elsevier, vol. 293(C).
    13. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    14. Bhat, Furqan A. & Tiwari, Gaurav Yash & Verma, Ashish, 2024. "Preferences for public electric vehicle charging infrastructure locations: A discrete choice analysis," Transport Policy, Elsevier, vol. 149(C), pages 177-197.
    15. Mehdizadeh, Milad & Nayum, Alim & Nordfjærn, Trond & Klöckner, Christian A., 2024. "Are Norwegian car users ready for a transition to vehicle-to-grid technology?," Transport Policy, Elsevier, vol. 146(C), pages 126-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    2. Herberz, Mario & Hahnel, Ulf J.J. & Brosch, Tobias, 2020. "The importance of consumer motives for green mobility: A multi-modal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 102-118.
    3. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    4. Hardman, Scott & Shiu, Eric & Steinberger-Wilckens, Robert, 2016. "Comparing high-end and low-end early adopters of battery electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 40-57.
    5. Sun, Ka Kit & He, Sylvia Y. & Thøgersen, John, 2022. "The purchase intention of electric vehicles in Hong Kong, a high-density Asian context, and main differences from a Nordic context," Transport Policy, Elsevier, vol. 128(C), pages 98-112.
    6. Mohamed, Moataz & Higgins, Chris & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Identifying and characterizing potential electric vehicle adopters in Canada: A two-stage modelling approach," Transport Policy, Elsevier, vol. 52(C), pages 100-112.
    7. Julian M. Müller, 2019. "Comparing Technology Acceptance for Autonomous Vehicles, Battery Electric Vehicles, and Car Sharing—A Study across Europe, China, and North America," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    8. Gulzari, Adeela & Wang, Yuchen & Prybutok, Victor, 2022. "A green experience with eco-friendly cars: A young consumer electric vehicle rental behavioral model," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    9. Jon Martin Denstadli & Tom Erik Julsrud, 2019. "Moving Towards Electrification of Workers’ Transportation: Identifying Key Motives for the Adoption of Electric Vans," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    10. Higueras-Castillo, Elena & Liébana-Cabanillas, Francisco José & Muñoz-Leiva, Francisco & García-Maroto, Inmaculada, 2019. "Evaluating consumer attitudes toward electromobility and the moderating effect of perceived consumer effectiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 387-398.
    11. Adu-Gyamfi, Gibbson & Asamoah, Ama Nyarkoh & Obuobi, Bright & Nketiah, Emmanuel & Zhang, Ming, 2024. "Electric mobility in an oil-producing developing nation: Empirical assessment of electric vehicle adoption," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    12. Brückmann, Gracia, 2022. "The effects of policies providing information and trialling on the knowledge about and the intention to adopt new energy technologies," Energy Policy, Elsevier, vol. 167(C).
    13. Hasan, Saiful & Simsekoglu, Özlem, 2020. "The role of psychological factors on vehicle kilometer travelled (VKT) for battery electric vehicle (BEV) users," Research in Transportation Economics, Elsevier, vol. 82(C).
    14. Türnau, Marc, 2015. "Assessing the impact of long-term mobility choice motivation and short-term mobility means connotation on the use intention of electric cars in rural areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 16-29.
    15. Ingeborgrud, Lina & Ryghaug, Marianne, 2019. "The role of practical, cognitive and symbolic factors in the successful implementation of battery electric vehicles in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 507-516.
    16. Roemer, Ellen & Henseler, Jörg, 2022. "The dynamics of electric vehicle acceptance in corporate fleets: Evidence from Germany," Technology in Society, Elsevier, vol. 68(C).
    17. Ye, Fei & Kang, Wanlin & Li, Lixu & Wang, Zhiqiang, 2021. "Why do consumers choose to buy electric vehicles? A paired data analysis of purchase intention configurations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 14-27.
    18. Brückmann, Gracia, 2022. "Test-drives & information might not boost actual battery electric vehicle uptake?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 204-218.
    19. Sovacool, Benjamin K. & Axsen, Jonn, 2018. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 730-746.
    20. Hardman, Scott & Tal, Gil, 2021. "Discontinuance Among California’s Electric Vehicle Buyers: Why are Some Consumers Abandoning Electric Vehicles?," Institute of Transportation Studies, Working Paper Series qt11n6f4hs, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:72:y:2018:i:c:p:180-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.