IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v29y2013icp38-45.html
   My bibliography  Save this article

The cross elasticity between gasoline prices and transit use: Evidence from Chicago

Author

Listed:
  • Nowak, William P.
  • Savage, Ian

Abstract

This paper calculates the cross elasticity between the price of gasoline and transit ridership in Chicago using monthly data for the period between January 1999 and December 2010. Separate estimations are conducted for city heavy rail, city bus, commuter rail and suburban bus services. A 12-month difference model is used to overcome seasonality. The paper finds that the cross elasticities when gas prices were less than $3 a gallon were small, with a magnitude of less than 0.05. When prices exceeded $3 a gallon, the elasticity was larger, in the range of 0.12–0.14, for the rail modes. In the summer of 2008 when prices exceeded $4 a gallon, there was considerable responsiveness with elasticities of 0.28–0.30 for city and suburban bus, and 0.37 for commuter rail. These values are similar to, or even larger than, those found during the oil crises of the 1970s and early 1980s.

Suggested Citation

  • Nowak, William P. & Savage, Ian, 2013. "The cross elasticity between gasoline prices and transit use: Evidence from Chicago," Transport Policy, Elsevier, vol. 29(C), pages 38-45.
  • Handle: RePEc:eee:trapol:v:29:y:2013:i:c:p:38-45
    DOI: 10.1016/j.tranpol.2013.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X13000383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2013.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anas, Alex & Hiramatsu, Tomoru, 2012. "The effect of the price of gasoline on the urban economy: From route choice to general equilibrium," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 855-873.
    2. Savage, Ian, 2004. "Management objectives and the causes of mass transit deficits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 181-199, March.
    3. Frondel, Manuel & Vance, Colin, 2011. "Rarely enjoyed? A count data analysis of ridership in Germany's public transport," Transport Policy, Elsevier, vol. 18(2), pages 425-433, March.
    4. Lane, Bradley W., 2010. "The relationship between recent gasoline price fluctuations and transit ridership in major US cities," Journal of Transport Geography, Elsevier, vol. 18(2), pages 214-225.
    5. Gerard de Jong & Hugh Gunn, 2001. "Recent Evidence on Car Cost and Time Elasticities of Travel Demand in Europe," Journal of Transport Economics and Policy, University of Bath, vol. 35(2), pages 137-160, May.
    6. Wang, George H. K. & Skinner, David, 1984. "The impact of fare and gasoline price changes on monthly transit ridership: Empirical evidence from seven U.S. transit authorities," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 29-41, February.
    7. Voith, Richard, 1991. "The long-run elasticity of demand for commuter rail transportation," Journal of Urban Economics, Elsevier, vol. 30(3), pages 360-372, November.
    8. Holmgren, Johan, 2007. "Meta-analysis of public transport demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1021-1035, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miller, Caroline & Savage, Ian, 2017. "Does the demand response to transit fare increases vary by income?," Transport Policy, Elsevier, vol. 55(C), pages 79-86.
    2. Erhardt, Gregory D. & Hoque, Jawad Mahmud & Goyal, Vedant & Berrebi, Simon & Brakewood, Candace & Watkins, Kari E., 2022. "Why has public transit ridership declined in the United States?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 68-87.
    3. Davis, Lucas W., 2021. "Estimating the price elasticity of demand for subways: Evidence from Mexico," Regional Science and Urban Economics, Elsevier, vol. 87(C).
    4. Rahman, Moshiur & Yasmin, Shamsunnahar & Eluru, Naveen, 2019. "Controlling for endogeneity between bus headway and bus ridership: A case study of the Orlando region," Transport Policy, Elsevier, vol. 81(C), pages 208-219.
    5. Avner, Paolo & Rentschler, Jun & Hallegatte, Stephane, 2014. "Carbon price efficiency : lock-in and path dependence in urban forms and transport infrastructure," Policy Research Working Paper Series 6941, The World Bank.
    6. Nocera, Silvio & Pungillo, Giuseppe & Bruzzone, Francesco, 2021. "How to evaluate and plan the freight-passengers first-last mile," Transport Policy, Elsevier, vol. 113(C), pages 56-66.
    7. Youzhi Zeng & Bin Ran & Ning Zhang & Xiaobao Yang, 2021. "Estimating the Price Elasticity of Train Travel Demand and Its Variation Rules and Application in Energy Used and CO 2 Emissions," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    8. Kushneel Prakash & Sefa Awaworyi Churchill & Russell Smyth, 2022. "Petrol prices and obesity," Health Economics, John Wiley & Sons, Ltd., vol. 31(7), pages 1381-1401, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. M. Fullerton & A. G. Walke, 2013. "Public transportation demand in a border metropolitan economy," Applied Economics, Taylor & Francis Journals, vol. 45(27), pages 3922-3931, September.
    2. Xiaohong Chen & Xiang Wang & Hua Zhang & Jia Li, 2014. "The Diversity and Evolution Process of Bus System Performance in Chinese Cities: An Empirical Study," Sustainability, MDPI, vol. 6(11), pages 1-17, November.
    3. Fullerton, Thomas M. Jr & Walke, Adam G., 2012. "Border Zone Mass Transit Demand in Brownsville and Laredo," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 51(2).
    4. Wardman, Mark & Toner, Jeremy & Fearnley, Nils & Flügel, Stefan & Killi, Marit, 2018. "Review and meta-analysis of inter-modal cross-elasticity evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 662-681.
    5. Boisjoly, Geneviève & Grisé, Emily & Maguire, Meadhbh & Veillette, Marie-Pier & Deboosere, Robbin & Berrebi, Emma & El-Geneidy, Ahmed, 2018. "Invest in the ride: A 14 year longitudinal analysis of the determinants of public transport ridership in 25 North American cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 434-445.
    6. Winston, Clifford & Maheshri, Vikram, 2007. "On the social desirability of urban rail transit systems," Journal of Urban Economics, Elsevier, vol. 62(2), pages 362-382, September.
    7. Yash Babar & Gordon Burtch, 2020. "Examining the Heterogeneous Impact of Ride-Hailing Services on Public Transit Use," Information Systems Research, INFORMS, vol. 31(3), pages 820-834, September.
    8. Richard Kalis & Daniel Dujava, 2019. "Choosing the Mode of Transport – Case Study of Bratislava Region," Department of Economic Policy Working Paper Series 019, Department of Economic Policy, Faculty of National Economy, University of Economics in Bratislava.
    9. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    10. Tikoudis, Ioannis & Farrow, Katherine & Mebiame, Rose Mba & Oueslati, Walid, 2022. "Beyond average population density: Measuring sprawl with density-allocation indicators," Land Use Policy, Elsevier, vol. 112(C).
    11. Mark Wardman, 2012. "Review and meta-analysis of U.K. time elasticities of travel demand," Transportation, Springer, vol. 39(3), pages 465-490, May.
    12. Deepa, L. & Rawoof Pinjari, Abdul & Krishna Nirmale, Sangram & Srinivasan, Karthik K. & Rambha, Tarun, 2022. "A direct demand model for bus transit ridership in Bengaluru, India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 126-147.
    13. Rahman, Moshiur & Yasmin, Shamsunnahar & Eluru, Naveen, 2019. "Controlling for endogeneity between bus headway and bus ridership: A case study of the Orlando region," Transport Policy, Elsevier, vol. 81(C), pages 208-219.
    14. Lane, Bradley W., 2012. "A time-series analysis of gasoline prices and public transportation in US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 22(C), pages 221-235.
    15. Milioti, Christina P. & Karlaftis, Matthew G., 2014. "Estimating multimodal public transport mode shares in Athens, Greece," Journal of Transport Geography, Elsevier, vol. 34(C), pages 88-95.
    16. Avner, Paolo & Rentschler, Jun & Hallegatte, Stephane, 2014. "Carbon price efficiency : lock-in and path dependence in urban forms and transport infrastructure," Policy Research Working Paper Series 6941, The World Bank.
    17. Chiang, Wen-Chyuan & Russell, Robert A. & Urban, Timothy L., 2011. "Forecasting ridership for a metropolitan transit authority," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 696-705, August.
    18. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    19. Bruno De Borger & Bart Wuyts, 2009. "Commuting, Transport Tax Reform and the Labour Market: Employer-paid Parking and the Relative Efficiency of Revenue Recycling Instruments," Urban Studies, Urban Studies Journal Limited, vol. 46(1), pages 213-233, January.
    20. Abe, Ryosuke & Kato, Hironori, 2017. "What led to the establishment of a rail-oriented city? Determinants of urban rail supply in Tokyo, Japan, 1950–2010," Transport Policy, Elsevier, vol. 58(C), pages 72-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:29:y:2013:i:c:p:38-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.