IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v155y2024icp79-92.html
   My bibliography  Save this article

Potential-based dynamic parking navigation for autonomous vehicles: Near-priority vs. distant-priority

Author

Listed:
  • Lu, Xiao-Shan
  • Guo, Ren-Yong
  • Huang, Hai-Jun
  • Ding, Heng

Abstract

We aim to enhance the parking efficiency for a group of autonomous vehicles in a large parking lot during peak hours. Two parking principles, i.e. the near-priority (NP) and distant-priority (DP) principles, are proposed and quantitatively examined. The NP principle characterizes individual parking behavior, where autonomous vehicles tend to select available parking spaces that are closer in proximity. Conversely, the DP principle is proposed from the perspective of the entire parking system, prioritizing the allocation of more distant parking spaces within a certain range around each entrance. Two time indicators, including the overall parking time and the average parking time, are adopted to evaluate the performance of the two principles. A potential-based cellular automata (CA) model is proposed to formulate the dynamic parking process of vehicles in a two-dimensional space, where vehicle navigation is driven by a so-called potential field. Then, two dynamic navigation algorithms are developed for parking navigation under the NP and DP principles. Furthermore, by conducting a set of comparative simulation experiments, we have obtained some management insights into peak parking management in the era of autonomous driving.

Suggested Citation

  • Lu, Xiao-Shan & Guo, Ren-Yong & Huang, Hai-Jun & Ding, Heng, 2024. "Potential-based dynamic parking navigation for autonomous vehicles: Near-priority vs. distant-priority," Transport Policy, Elsevier, vol. 155(C), pages 79-92.
  • Handle: RePEc:eee:trapol:v:155:y:2024:i:c:p:79-92
    DOI: 10.1016/j.tranpol.2024.06.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24001847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.06.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Millard-Ball, Adam, 2019. "The autonomous vehicle parking problem," Transport Policy, Elsevier, vol. 75(C), pages 99-108.
    2. Pel, Adam J. & Chaniotakis, Emmanouil, 2017. "Stochastic user equilibrium traffic assignment with equilibrated parking search routes," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 123-139.
    3. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    4. Shoup, Donald C., 2006. "Cruising for Parking," University of California Transportation Center, Working Papers qt55s7079f, University of California Transportation Center.
    5. Assemi, Behrang & Baker, Douglas & Paz, Alexander, 2020. "Searching for on-street parking: An empirical investigation of the factors influencing cruise time," Transport Policy, Elsevier, vol. 97(C), pages 186-196.
    6. Zou, Bo & Kafle, Nabin & Wolfson, Ouri & Lin, Jie (Jane), 2015. "A mechanism design based approach to solving parking slot assignment in the information era," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 631-653.
    7. Zhibin Chen & Stephen Spana & Yafeng Yin & Yuchuan Du, 2019. "An Advanced Parking Navigation System for Downtown Parking," Networks and Spatial Economics, Springer, vol. 19(3), pages 953-968, September.
    8. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    9. Du, Lili & Gong, Siyuan, 2016. "Stochastic Poisson game for an online decentralized and coordinated parking mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 44-63.
    10. Leclercq, Ludovic & Sénécat, Alméria & Mariotte, Guilhem, 2017. "Dynamic macroscopic simulation of on-street parking search: A trip-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 268-282.
    11. Jie Yang & Fang He & Xi Lin & Max Zuo‐Jun Shen, 2021. "Mechanism Design for Stochastic Dynamic Parking Resource Allocation," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3615-3634, October.
    12. Tian, Qiong & Yang, Li & Wang, Chenlan & Huang, Hai-Jun, 2018. "Dynamic pricing for reservation-based parking system: A revenue management method," Transport Policy, Elsevier, vol. 71(C), pages 36-44.
    13. Shao, Saijun & Xu, Su Xiu & Yang, Hai & Huang, George Q., 2020. "Parking reservation disturbances," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 83-97.
    14. Boyles, Stephen D. & Tang, Shoupeng & Unnikrishnan, Avinash, 2015. "Parking search equilibrium on a network," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 390-409.
    15. Brudner, Amir, 2023. "On the management of residential on-street parking: Policies and repercussions," Transport Policy, Elsevier, vol. 138(C), pages 94-107.
    16. He, Fang & Yin, Yafeng & Chen, Zhibin & Zhou, Jing, 2015. "Pricing of parking games with atomic players," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    2. Tian, Qiong & Yang, Li & Wang, Chenlan & Huang, Hai-Jun, 2018. "Dynamic pricing for reservation-based parking system: A revenue management method," Transport Policy, Elsevier, vol. 71(C), pages 36-44.
    3. Zhang, Fangni & Lindsey, Robin & Yang, Hai & Shao, Chaoyi & Liu, Wei, 2022. "Two-sided pricing strategies for a parking sharing platform: Reselling or commissioning?," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 40-63.
    4. Xiaojuan Yu & Vincent A.C. van den Berg, 2024. "Human-driven vehicles’ cruising versus autonomous vehicles’ back- and-forth congestion: The effects on traveling, parking and congestion," Tinbergen Institute Discussion Papers 24-032/VIII, Tinbergen Institute.
    5. Yi LIU, 2020. "Impact Of Parking Fees On Social Benefits Based On The Emergence Of Shared Parking," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 15(1), pages 54-74, February.
    6. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    7. Semeneh Hunachew Bayih & Surafel Luleseged Tilahun, 2024. "Dynamic vehicle parking pricing. A review," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(1), pages 35-59.
    8. Wei Wu & Wei Liu & Fangni Zhang & Vinayak Dixit, 2021. "A New Flexible Parking Reservation Scheme for the Morning Commute under Limited Parking Supplies," Networks and Spatial Economics, Springer, vol. 21(3), pages 513-545, September.
    9. Tan, Bing Qing & Xu, Su Xiu & Thürer, Matthias & Kang, Kai & Zhao, Zhiheng & Li, Ming, 2024. "Booking versus search-based parking strategy: A game-theoretic methodology," Research in Transportation Economics, Elsevier, vol. 104(C).
    10. Karaliopoulos, Merkouris & Katsikopoulos, Konstantinos & Lambrinos, Lambros, 2017. "Bounded rationality can make parking search more efficient: The power of lexicographic heuristics," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 28-50.
    11. Sayarshad, Hamid R. & Sattar, Shahram & Oliver Gao, H., 2020. "A scalable non-myopic atomic game for a smart parking mechanism," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    12. Abdelghaffar, Hossam M. & Batista, S.F.A. & Rehman, Abdur & Cao, Jin & Menéndez, Mónica & Jabari, Saif Eddin, 2024. "Comparison of probabilistic cruising-for-parking time estimation models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    13. Zhang, Xinying & Pitera, Kelly & Wang, Yuanqing, 2024. "Exploring parking choices under the coexistence of autonomous and conventional vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    14. Chen, Rong & Gao, Ge & Kang, Liu-Jiang & Zhang, Li-Ye, 2024. "Efficiency and equity analysis on parking reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    15. Wang, Pengfei & Guan, Hongzhi & Liu, Peng, 2020. "Modeling and solving the optimal allocation-pricing of public parking resources problem in urban-scale network," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 74-98.
    16. Leclercq, Ludovic & Sénécat, Alméria & Mariotte, Guilhem, 2017. "Dynamic macroscopic simulation of on-street parking search: A trip-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 268-282.
    17. Lu, Xiao-Shan & Huang, Hai-Jun & Guo, Ren-Yong & Xiong, Fen, 2021. "Linear location-dependent parking fees and integrated daily commuting patterns with late arrival and early departure in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 293-322.
    18. Sowmya Karri & Meera M. Dhabu, 2022. "Multistage Game Model Based Dynamic Pricing for Car Parking Slot to Control Congestion," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    19. Zakharenko, Roman, 2016. "The time dimension of parking economics," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 211-228.
    20. Du, Lili & Gong, Siyuan, 2016. "Stochastic Poisson game for an online decentralized and coordinated parking mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 44-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:155:y:2024:i:c:p:79-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.